skip to main content


Title: Measurement of the top quark antiquark charge asymmetry in highly boosted events in the single-lepton channel at 13 TeV
The measurement of the charge asymmetry for highly boosted top quark pairs decaying to a single lepton and jets is presented. The analysis is performed using 138 fb−1 of data collected in pp collisions at s√=13 TeV with the CMS detector during Run 2 of the Large Hadron Collider. The selection is optimized for top quark-antiquark pairs produced with large Lorentz boosts, resulting in non-isolated leptons and overlapping jets. The top quark charge asymmetry is measured for events with tt⎯⎯ invariant mass larger than 750 GeV and corrected for detector and acceptance effects using a binned maximum likelihood fit. The measured top quark charge asymmetry is in good agreement with the standard model prediction at next-to-next-to-leading order in perturbation theory with next-to-leading order electroweak corrections. Differential distributions for two invariant mass ranges are also presented.  more » « less
Award ID(s):
1912740
NSF-PAR ID:
10329788
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
CMS-PAS-TOP-21-014
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The mass of the top quark is measured using a sample of $${{\text {t}}\overline{{\text {t}}}}$$ t t ¯ events collected by the CMS detector using proton-proton collisions at $$\sqrt{s}=13$$ s = 13 $$\,\text {TeV}$$ TeV at the CERN LHC. Events are selected with one isolated muon or electron and at least four jets from data corresponding to an integrated luminosity of 35.9 $$\,\text {fb}^{-1}$$ fb - 1 . For each event the mass is reconstructed from a kinematic fit of the decay products to a $${{\text {t}}\overline{{\text {t}}}}$$ t t ¯ hypothesis. Using the ideogram method, the top quark mass is determined simultaneously with an overall jet energy scale factor (JSF), constrained by the mass of the W boson in $${\text {q}} \overline{{\text {q}}} ^\prime $$ q q ¯ ′ decays. The measurement is calibrated on samples simulated at next-to-leading order matched to a leading-order parton shower. The top quark mass is found to be $$172.25 \pm 0.08\,\text {(stat+JSF)} \pm 0.62\,\text {(syst)} \,\text {GeV} $$ 172.25 ± 0.08 (stat+JSF) ± 0.62 (syst) GeV . The dependence of this result on the kinematic properties of the event is studied and compared to predictions of different models of $${{\text {t}}\overline{{\text {t}}}}$$ t t ¯ production, and no indications of a bias in the measurements are observed. 
    more » « less
  2. A bstract A combination of measurements of the inclusive top-quark pair production cross-section performed by ATLAS and CMS in proton–proton collisions at centre-of-mass energies of 7 and 8 TeV at the LHC is presented. The cross-sections are obtained using top-quark pair decays with an opposite-charge electron–muon pair in the final state and with data corresponding to an integrated luminosity of about 5 fb − 1 at $$ \sqrt{s} $$ s = 7 TeV and about 20 fb − 1 at $$ \sqrt{s} $$ s = 8 TeV for each experiment. The combined cross-sections are determined to be 178 . 5 ± 4 . 7 pb at $$ \sqrt{s} $$ s = 7 TeV and $$ {243.3}_{-5.9}^{+6.0} $$ 243.3 − 5.9 + 6.0 pb at $$ \sqrt{s} $$ s = 8 TeV with a correlation of 0.41, using a reference top-quark mass value of 172.5 GeV. The ratio of the combined cross-sections is determined to be R 8 / 7 = 1 . 363 ± 0 . 032. The combined measured cross-sections and their ratio agree well with theory calculations using several parton distribution function (PDF) sets. The values of the top-quark pole mass (with the strong coupling fixed at 0.118) and the strong coupling (with the top-quark pole mass fixed at 172.5 GeV) are extracted from the combined results by fitting a next-to-next-to-leading-order plus next-to-next-to-leading-log QCD prediction to the measurements. Using a version of the NNPDF3.1 PDF set containing no top-quark measurements, the results obtained are $$ {m}_t^{\textrm{pole}}={173.4}_{-2.0}^{+1.8} $$ m t pole = 173.4 − 2.0 + 1.8 GeV and $$ {\alpha}_{\textrm{s}}\left({m}_Z\right)={0.1170}_{-0.0018}^{+0.0021} $$ α s m Z = 0.1170 − 0.0018 + 0.0021 . 
    more » « less
  3. A<sc>bstract</sc>

    A measurement of the top quark pole mass$$ {m}_{\textrm{t}}^{\textrm{pole}} $$mtpolein events where a top quark-antiquark pair ($$ \textrm{t}\overline{\textrm{t}} $$tt¯) is produced in association with at least one additional jet ($$ \textrm{t}\overline{\textrm{t}} $$tt¯+jet) is presented. This analysis is performed using proton-proton collision data at$$ \sqrt{s} $$s= 13 TeV collected by the CMS experiment at the CERN LHC, corresponding to a total integrated luminosity of 36.3 fb1. Events with two opposite-sign leptons in the final state (e+e,μ+μ, e±μ) are analyzed. The reconstruction of the main observable and the event classification are optimized using multivariate analysis techniques based on machine learning. The production cross section is measured as a function of the inverse of the invariant mass of the$$ \textrm{t}\overline{\textrm{t}} $$tt¯+jet system at the parton level using a maximum likelihood unfolding. Given a reference parton distribution function (PDF), the top quark pole mass is extracted using the theoretical predictions at next-to-leading order. For the ABMP16NLO PDF, this results in$$ {m}_{\textrm{t}}^{\textrm{pole}} $$mtpole= 172.93±1.36 GeV.

     
    more » « less
  4. A bstract The measurement of the production of charm jets, identified by the presence of a D 0 meson in the jet constituents, is presented in proton–proton collisions at centre-of-mass energies of $$ \sqrt{s} $$ s = 5.02 and 13 TeV with the ALICE detector at the CERN LHC. The D 0 mesons were reconstructed from their hadronic decay D 0 → K − π + and the respective charge conjugate. Jets were reconstructed from D 0 -meson candidates and charged particles using the anti- k T algorithm, in the jet transverse momentum range 5 < p T , chjet < 50 GeV/ c , pseudorapidity | η jet | < 0 . 9 − R , and with the jet resolution parameters R = 0 . 2 , 0 . 4 , 0 . 6. The distribution of the jet momentum fraction carried by a D 0 meson along the jet axis $$ \left({z}_{\Big\Vert}^{\textrm{ch}}\right) $$ z ‖ ch was measured in the range 0 . 4 < $$ {z}_{\Big\Vert}^{\textrm{ch}} $$ z ‖ ch < 1 . 0 in four ranges of the jet transverse momentum. Comparisons of results for different collision energies and jet resolution parameters are also presented. The measurements are compared to predictions from Monte Carlo event generators based on leading-order and next-to-leading-order perturbative quantum chromodynamics calculations. A generally good description of the main features of the data is obtained in spite of a few discrepancies at low p T , chjet . Measurements were also done for R = 0 . 3 at $$ \sqrt{s} $$ s = 5 . 02 and are shown along with their comparisons to theoretical predictions in an appendix to this paper. 
    more » « less
  5. A bstract A measurement of four-top-quark production using proton-proton collision data at a centre-of-mass energy of 13 TeV collected by the ATLAS detector at the Large Hadron Collider corresponding to an integrated luminosity of 139 fb − 1 is presented. Events are selected if they contain a single lepton (electron or muon) or an opposite-sign lepton pair, in association with multiple jets. The events are categorised according to the number of jets and how likely these are to contain b -hadrons. A multivariate technique is then used to discriminate between signal and background events. The measured four-top-quark production cross section is found to be $$ {26}_{-15}^{+17} $$ 26 − 15 + 17 fb, with a corresponding observed (expected) significance of 1.9 (1.0) standard deviations over the background-only hypothesis. The result is combined with the previous measurement performed by the ATLAS Collaboration in the multilepton final state. The combined four-top-quark production cross section is measured to be $$ {24}_{-6}^{+7} $$ 24 − 6 + 7 fb, with a corresponding observed (expected) signal significance of 4.7 (2.6) standard deviations over the background-only predictions. It is consistent within 2.0 standard deviations with the Standard Model expectation of 12 . 0 ± 2 . 4 fb. 
    more » « less