skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Plant single-cell solutions for energy and the environment
Abstract Progress in sequencing, microfluidics, and analysis strategies has revolutionized the granularity at which multicellular organisms can be studied. In particular, single-cell transcriptomics has led to fundamental new insights into animal biology, such as the discovery of new cell types and cell type-specific disease processes. However, the application of single-cell approaches to plants, fungi, algae, or bacteria (environmental organisms) has been far more limited, largely due to the challenges posed by polysaccharide walls surrounding these species’ cells. In this perspective, we discuss opportunities afforded by single-cell technologies for energy and environmental science and grand challenges that must be tackled to apply these approaches to plants, fungi and algae. We highlight the need to develop better and more comprehensive single-cell technologies, analysis and visualization tools, and tissue preparation methods. We advocate for the creation of a centralized, open-access database to house plant single-cell data. Finally, we consider how such efforts should balance the need for deep characterization of select model species while still capturing the diversity in the plant kingdom. Investments into the development of methods, their application to relevant species, and the creation of resources to support data dissemination will enable groundbreaking insights to propel energy and environmental science forward.  more » « less
Award ID(s):
1916797 2052590
PAR ID:
10329793
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Communications Biology
Volume:
4
Issue:
1
ISSN:
2399-3642
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The symbiotic interaction of plants with arbuscular mycorrhizal (AM) fungi is ancient and widespread. Plants provide AM fungi with carbon in exchange for nutrients and water, making this interaction a prime target for crop improvement. However, plant–fungal interactions are restricted to a small subset of root cells, precluding the application of most conventional functional genomic techniques to study the molecular bases of these interactions. Here we used single-nucleus and spatial RNA sequencing to explore bothMedicago truncatulaandRhizophagus irregularistranscriptomes in AM symbiosis at cellular and spatial resolution. Integrated, spatially registered single-cell maps revealed infected and uninfected plant root cell types. We observed that cortex cells exhibit distinct transcriptome profiles during different stages of colonization by AM fungi, indicating dynamic interplay between both organisms during establishment of the cellular interface enabling successful symbiosis. Our study provides insight into a symbiotic relationship of major agricultural and environmental importance and demonstrates a paradigm combining single-cell and spatial transcriptomics for the analysis of complex organismal interactions. 
    more » « less
  2. Cell-to-cell communication is fundamental to multicellular organisms and unicellular organisms living in a microbiome. It is thought to have evolved as a stress- or quorum-sensing mechanism in unicellular organisms. A unique cell-to-cell communication mechanism that uses reactive oxygen species (ROS) as a signal (termed the “ROS wave”) was identified in flowering plants. This process is essential for systemic signaling and plant acclimation to stress and can spread from a small group of cells to the entire plant within minutes. Whether a similar signaling process is found in other organisms is however unknown. Here, we report that the ROS wave can be found in unicellular algae, amoeba, ferns, mosses, mammalian cells, and isolated hearts. We further show that this process can be triggered in unicellular and multicellular organisms by a local stress or H2O2treatment and blocked by the application of catalase or NADPH oxidase inhibitors and that in unicellular algae it communicates important stress–response signals between cells. Taken together, our findings suggest that an active process of cell-to-cell ROS signaling, like the ROS wave, evolved before unicellular and multicellular organisms diverged. This mechanism could have communicated an environmental stress signal between cells and coordinated the acclimation response of many different cells living in a community. The finding of a signaling process, like the ROS wave, in mammalian cells further contributes to our understanding of different diseases and could impact the development of drugs that target for example cancer or heart disease. 
    more » « less
  3. SUMMARY Cis‐regulatory elements (CREs) are important sequences for gene expression and for plant biological processes such as development, evolution, domestication, and stress response. However, studying CREs in plant genomes has been challenging. The totipotent nature of plant cells, coupled with the inability to maintain plant cell types in culture and the inherent technical challenges posed by the cell wall has limited our understanding of how plant cell types acquire and maintain their identities and respond to the environment via CRE usage. Advances in single‐cell epigenomics have revolutionized the field of identifying cell‐type‐specific CREs. These new technologies have the potential to significantly advance our understanding of plant CRE biology, and shed light on how the regulatory genome gives rise to diverse plant phenomena. However, there are significant biological and computational challenges associated with analyzing single‐cell epigenomic datasets. In this review, we discuss the historical and foundational underpinnings of plant single‐cell research, challenges, and common pitfalls in the analysis of plant single‐cell epigenomic data, and highlight biological challenges unique to plants. Additionally, we discuss how the application of single‐cell epigenomic data in various contexts stands to transform our understanding of the importance of CREs in plant genomes. 
    more » « less
  4. Plant diseases resulting from pathogens and pests constitute a persistent threat to global food security. Pathogenic infections of plants are influenced by environmental factors; a concept encapsulated in the “disease triangle” model. It is important to elucidate the complex molecular mechanisms underlying the interactions among plants, their pathogens and various environmental factors in the disease triangle. This review aims to highlight recent advancements in the application of systems biology to enhance understanding of the plant disease triangle within the context of microbiome rising to become the 4th dimension. Recent progress in microbiome research utilizing model plant species has begun to illuminate the roles of specific microorganisms and the mechanisms of plant–microbial interactions. We will examine (1) microbiome-mediated functions related to plant growth and protection, (2) advancements in systems biology, (3) current -omics methodologies and new approaches, and (4) challenges and future perspectives regarding the exploitation of plant defense mechanisms via microbiomes. It is posited that systems biology approaches such as single-cell RNA sequencing and mass spectrometry-based multi-omics can decode plant defense mechanisms. Progress in this significant area of plant biology has the potential to inform rational crop engineering and breeding strategies aimed at enhancing disease resistance without compromising other pathways that affect crop yield. 
    more » « less
  5. Abstract Trans-species RNA interference (RNAi) occurs naturally when small RNAs (sRNAs) silence genes in species different from their origin. This phenomenon has been observed between plants and various organisms including fungi, animals and other plant species. Understanding the mechanisms used in natural cases of trans-species RNAi, such as sRNA processing and movement, will enable more effective development of crop protection methods using host-induced gene silencing (HIGS). Recent progress has been made in understanding the mechanisms of cell-to-cell and long-distance movement of sRNAs within individual plants. This increased understanding of endogenous plant sRNA movement may be translatable to trans-species sRNA movement. Here, we review diverse cases of natural trans-species RNAi focusing on current theories regarding intercellular and long-distance sRNA movement. We also touch on trans-species sRNA evolution, highlighting its research potential and its role in improving the efficacy of HIGS. 
    more » « less