- Publication Date:
- NSF-PAR ID:
- 10329793
- Journal Name:
- Communications Biology
- Volume:
- 4
- Issue:
- 1
- ISSN:
- 2399-3642
- Sponsoring Org:
- National Science Foundation
More Like this
-
Species distributions, abundance, and interactions have always been influenced by human activity and are currently experiencing rapid change. Biodiversity benchmark surveys traditionally require intense human labor inputs to find, identify, and record organisms limiting the rate and impact of scientific enquiry and discovery. Recent emergence and advancement of monitoring technologies have improved biodiversity data collection to a scale and scope previously unimaginable. Community science web platforms, smartphone applications, and technology assisted identification have expedited the speed and enhanced the volume of observational data all while providing open access to these data worldwide. How to integrate and leverage the data into valuable information on how species are changing in space and time requires new best practices in computational and analytical approaches. Here we integrate data from three community science repositories to explore how a specialist herbivore distribution changes in relation to host plant distributions and other environmental factors. We generate a series of temporally explicit species distribution models to generate range predictions for a specialist insect herbivore ( Papilio cresphontes ) and three predominant host-plant species. We find that this insect species has experienced rapid northern range expansion, likely due to a combination of the range of its larval host plantsmore »
-
The contemporary capacity of genome sequence analysis significantly lags behind the rapidly evolving sequencing technologies. Retrieving biological meaningful information from an ever-increasing amount of genome data would be significantly beneficial for functional genomic studies. For example, the duplication, organization, evolution, and function of superfamily genes are arguably important in many aspects of life. However, the incompleteness of annotations in many sequenced genomes often results in biased conclusions in comparative genomic studies of superfamilies. Here, we present a Perl software, called Closing Target Trimming (CTT), for automatically identifying most, if not all, members of a gene family in any sequenced genomes on CentOS 7 platform. To benefit a broader application on other operating systems, we also created a Docker application package, CTTdocker. Our test data on the F-box gene superfamily showed 78.2 and 79% gene finding accuracies in two well annotated plant genomes, Arabidopsis thaliana and rice, respectively. To further demonstrate the effectiveness of this program, we ran it through 18 plant genomes and five non-plant genomes to compare the expansion of the F-box and the BTB superfamilies. The program discovered that on average 12.7 and 9.3% of the total F-box and BTB members, respectively, are new loci in plant genomes,more »
-
Photosynthetic organisms are sources of sustainable foods, renewable biofuels, novel biopharmaceuticals, and next-generation biomaterials essential for modern society. Efforts to improve the yield, variety, and sustainability of products dependent on chloroplasts are limited by the need for biotechnological approaches for high-throughput chloroplast transformation, monitoring chloroplast function, and engineering photosynthesis across diverse plant species. The use of nanotechnology has emerged as a novel approach to overcome some of these limitations. Nanotechnology is enabling advances in the targeted delivery of chemicals and genetic elements to chloroplasts, nanosensors for chloroplast biomolecules, and nanotherapeutics for enhancing chloroplast performance. Nanotechnology-mediated delivery of DNA to the chloroplast has the potential to revolutionize chloroplast synthetic biology by allowing transgenes, or even synthesized DNA libraries, to be delivered to a variety of photosynthetic species. Crop yield improvements could be enabled by nanomaterials that enhance photosynthesis, increase tolerance to stresses, and act as nanosensors for biomolecules associated with chloroplast function. Engineering isolated chloroplasts through nanotechnology and synthetic biology approaches are leading to a new generation of plant-based biomaterials able to self-repair using abundant CO 2 and water sources and are powered by renewable sunlight energy. Current knowledge gaps of nanotechnology-enabled approaches for chloroplast biotechnology include precise mechanisms for entrymore »
-
Abstract Molecular technologies have revolutionized the field of wildlife disease ecology, allowing the detection of outbreaks, novel pathogens, and invasive strains. In particular, metabarcoding approaches, defined here as tools used to amplify and sequence universal barcodes from a single sample (e.g., 16S rRNA for bacteria, ITS for fungi, 18S rRNA for eukaryotes), are expanding our traditional view of host–pathogen dynamics by integrating microbial interactions that modulate disease outcome. Here, I provide an analysis from the perspective of the field of amphibian disease ecology, where the emergence of multi-host pathogens has caused global declines and species extinctions. I reanalyzed an experimental mesocosm dataset to infer the functional profiles of the skin microbiomes of coqui frogs (Eleutherodactylus coqui), an amphibian species that is consistently found infected with the fungal pathogen Batrachochytrium dendrobatidis and has high turnover of skin bacteria driven by seasonal shifts. I found that the metabolic activities of microbiomes operate at different capacities depending on the season. Global enrichment of predicted functions was more prominent during the warm-wet season, indicating that microbiomes during the cool-dry season were either depauperate, resistant to new bacterial colonization, or that their functional space was more saturated. These findings suggest important avenues to investigate howmore »
-
Plants are typically infected by a consortium of internal fungal associates, including endophytes in their leaves, as well as arbuscular mycorrhizal fungi (AMF) and dark septate endophytes (DSE) in their roots. It is logical that these organisms will interact with each other and the abiotic environment in addition to their host, but there has been little work to date examining the interactions of multiple symbionts within single plant hosts, or how the relationships among symbionts and their host change across environmental conditions. We examined the grass
Agrostis capillaris in the context of a climate manipulation experiment in prairies in the Pacific Northwest, USA. Each plant was tested for presence of foliar endophytes in the genusEpichloë , and we measured percent root length colonized (PRLC) by AMF and DSE. We hypothesized that the symbionts in our system would be in competition for host resources, that the outcome of that competition could be driven by the benefit to the host, and that the host plants would be able to allocate carbon to the symbionts in such a way as to maximize fitness benefit within a particular environmental context. We found a correlation between DSE and AMF PRLC across climatic conditions; we also found a fitnessmore »