skip to main content


Title: Effect of External Magnetic Field on Bulk Heterojunction Polymer Solar Cells
Abstract

Polymer solar cells (PSCs) with a bulk heterojunction (BHJ) device structure have incredible advantages, such as low‐cost fabrication and flexibility. However, the power conversion efficiency (PCE) of BHJ PSCs needs to be further improved to realize their practical applications. In this study, boosted PCEs from PSCs based on BHJ composites incorporated with Fe3O4magnetic nanoparticles (MNPs), aligned by an external magnetic field (EMF), are reported. It is found that the coercive electric field within the Fe3O4MNPs generated by the EMF has a strong and positive influence on the charge generation, which results in a more than 10% increase in free charge carriers. Moreover, the coercive electric field speeds up the charge carrier transport and suppresses charge carrier recombination within PSCs. In addition, a shortened extraction time makes charge carriers more likely to make it to the electrodes. As a result, more than 15% enhancement in PCE is observed from the PSCs based on the BHJ composite incorporated with the Fe3O4MNPs and the EMF as compared with that based on the BHJ composite thin film. This work indicates that the incorporation of MNPs and the EMF is a facile way to enhance the PCEs of PSCs.

 
more » « less
Award ID(s):
1903303
NSF-PAR ID:
10390320
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Macromolecular Rapid Communications
Volume:
44
Issue:
1
ISSN:
1022-1336
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Next‐generation electronics and energy technologies can now be developed as a result of the design, discovery, and development of novel, environmental friendly lead (Pb)‐free ferroelectric materials with improved characteristics and performance. However, there have only been a few reports of such complex materials’ design with multi‐phase interfacial chemistry, which can facilitate enhanced properties and performance. In this context, herein, novel lead‐free piezoelectric materials (1‐x)Ba0.95Ca0.05Ti0.95Zr0.05O3‐(x)Ba0.95Ca0.05Ti0.95Sn0.05O3, are reported, which are represented as (1‐x)BCZT‐(x)BCST, with demonstrated excellent properties and energy harvesting performance. The (1‐x)BCZT‐(x)BCST materials are synthesized by high‐temperature solid‐state ceramic reaction method by varyingxin the full range (x= 0.00–1.00). In‐depth exploration research is performed on the structural, dielectric, ferroelectric, and electro‐mechanical properties of (1‐x)BCZT‐(x)BCST ceramics. The formation of perovskite structure for all ceramics without the presence of any impurity phases is confirmed by X‐ray diffraction (XRD) analyses, which also reveals that the Ca2+, Zr4+, and Sn4+are well dispersed within the BaTiO3lattice. For all (1‐x)BCZT‐(x)BCST ceramics, thorough investigation of phase formation and phase‐stability using XRD, Rietveld refinement, Raman spectroscopy, high‐resolution transmission electron microscopy (HRTEM), and temperature‐dependent dielectric measurements provide conclusive evidence for the coexistence of orthorhombic + tetragonal (Amm2+P4mm) phases at room temperature. The steady transition ofAmm2crystal symmetry toP4mmcrystal symmetry with increasingxcontent is also demonstrated by Rietveld refinement data and related analyses. The phase transition temperatures, rhombohedral‐orthorhombic (TR‐O), orthorhombic‐ tetragonal (TO‐T), and tetragonal‐cubic (TC), gradually shift toward lower temperature with increasingxcontent. For (1‐x)BCZT‐(x)BCST ceramics, significantly improved dielectric and ferroelectric properties are observed, including relatively high dielectric constantεr≈ 1900–3300 (near room temperature),εr≈ 8800–12 900 (near Curie temperature), dielectric loss, tanδ≈ 0.01–0.02, remanent polarizationPr≈ 9.4–14 µC cm−2, coercive electric fieldEc≈ 2.5–3.6 kV cm−1. Further, high electric field‐induced strainS≈ 0.12–0.175%, piezoelectric charge coefficientd33≈ 296–360 pC N−1, converse piezoelectric coefficient ≈ 240–340 pm V−1, planar electromechanical coupling coefficientkp≈ 0.34–0.45, and electrostrictive coefficient (Q33)avg≈ 0.026–0.038 m4C−2are attained. Output performance with respect to mechanical energy demonstrates that the (0.6)BCZT‐(0.4)BCST composition (x= 0.4) displays better efficiency for generating electrical energy and, thus, the synthesized lead‐free piezoelectric (1‐x)BCZT‐(x)BCST samples are suitable for energy harvesting applications. The results and analyses point to the outcome that the (1‐x)BCZT‐(x)BCST ceramics as a potentially strong contender within the family of Pb‐free piezoelectric materials for future electronics and energy harvesting device technologies.

     
    more » « less
  2. Conjugated molecules have been typically utilized as either hole or electron extraction layers to boost the device performance of perovskite solar cells (PSCs), formed from three-dimensional (3D) perovskites, due to their high charge carrier mobility and electrical conductivity. However, the passivating role of conjugated molecules in creating two-dimensional (2D) perovskites has rarely been reported. In this study, we report novel conjugated aniline 3-phenyl-2-propen-1-amine (PPA) based 2D perovskites and further demonstrate efficient and stable PSCs containing a (PPA) x (MAPbI 3 ) 1− x /MAPbI 3 bilayer thin film (where MA is CH 3 NH 3 + ). The (PPA) x (MAPbI 3 ) 1− x /MAPbI 3 bilayer thin film possesses superior crystallinity and passivated trap states, resulting in enhanced charge transport and suppressed charge carrier recombination compared to those of a 3D MAPbI 3 thin film. As a result, PSCs containing the (PPA) x (MAPbI 3 ) 1− x /MAPbI 3 bilayer thin film exhibit a power conversion efficiency (PCE) of 21.98%, which is approximately a 25% enhancement compared to that of the MAPbI 3 thin film. Moreover, un-encapsulated PSCs containing the (PPA) x (MAPbI 3 ) 1− x /MAPbI 3 bilayer thin film retain 50% of their initial PCE after 1200 hours in an ambient atmosphere (25 °C, and 30 ± 10 humidity), whereas PSCs with the 3D MAPbI 3 thin film show significant degradation after 100 hours and a degradation of more than 50% of their original PCE after 500 hours. These results demonstrate that the incorporation of conjugated molecules as organic spacer cations to create 2D perovskites on top of 3D perovskites is an effective way to approach high-performance PSCs. 
    more » « less
  3. Abstract

    With power conversion efficiencies now reaching 24.2%, the major factor limiting efficient electricity generation using perovskite solar cells (PSCs) is their long‐term stability. In particular, PSCs have demonstrated rapid degradation under illumination, the driving mechanism of which is yet to be understood. It is shown that elevated device temperature coupled with excess charge carriers due to constant illumination is the dominant force in the rapid degradation of encapsulated perovskite solar cells under illumination. Cooling the device to 20 °C and operating at the maximum power point improves the stability of CH3NH3PbI3solar cells over 100× compared to operation under open circuit conditions at 60 °C. Light‐induced strain originating from photothermal‐induced expansion is also observed in CH3NH3PbI3, which excludes other light‐induced‐strain mechanisms. However, strain and electric field do not appear to play any role in the initial rapid degradation of CH3NH3PbI3solar cells under illumination. It is revealed that the formation of additional recombination centers in PSCs facilitated by elevated temperature and excess charge carriers ultimately results in rapid light‐induced degradation. Guidance on the best methods for measuring the stability of PSCs is also given.

     
    more » « less
  4. null (Ed.)
    While typical perovskite solar cells (PSCs) with doped Spiro-OMeTAD as a hole transport material (HTM) have shown rapid increase in their power-conversion efficiencies (PCEs), their poor stability remains a big concern as the dopants and additives used with Spiro-OMeTAD have a strong tendency to diffuse into and degrade the perovskite active layer under normal operating conditions. Aiming to push forward the development of PSCs, many dopant-free small-molecular HTMs have been reported based on energetic considerations for charge transfer and criteria for charge transport. However, the PCEs of the state-of-the-art PSCs with dopant-free small-molecular HTMs are still inferior to those using doped Spiro-OMeTAD, and little attention has been paid to the interactions between the HTM and perovskite absorber in PSCs. Here, we report a facile design concept to functionalize HTMs so that they can passivate perovskite surface defects and enable perovskite active layers with lower density of surface trap states and more efficient charge transfer to the hole transport layer. As a consequence, perovskite solar cells with a functionalized HTM exhibit a champion PCE of 22.4%, the highest value for PSCs using dopant-free small molecular HTMs to date, and substantively improved operational stability under continuous illumination. With a T 80 of (1617 ± 7) h for encapsulated cells tested at 30 °C in air, the PSCs containing the functionalized HTM are among the most stable PSCs using dopant-free small-molecular HTMs. The effectiveness of our strategy is demonstrated in PSCs comprising both a state-of-the-art MA-free perovskite and MAPbI, a system having more surface defects, and implies the potential generality of our strategy for a broad class of perovskite systems, to further advance highly efficient and stable solar cells. 
    more » « less
  5. Abstract

    In its initial phase in 2009, the inorganic‐organic hybrid perovskite solar cells (PSCs) delivered a 3.8% power conversion efficiency (PCE), which is far below the present 25.7% PCE obtained in 2022. The significant improvement of the efficiency of PSCs in such a short period has stimulated significant interest in the photovoltaic community. However, the performance of current PSCs is behind the commercially available and widely used solar cells in terms of stability and scalability. Among various commonly studied perovskite materials, methylammonium lead iodide (MAPbI3) is the most widely studied. This review will focus on the common solar cell structures (mesoporous, inverted planar p‐i‐n, planar n‐i‐p) using MAPbI3perovskite as an active layer and the effect of these solar cell structures on their performances. Furthermore, some commonly‐used strategies are outlined for improving the device performance, such as optimizing the deposition technique of the charge transporting and the active layers, modifying the properties of the carrier transporting layer and the perovskite layer by interface engineering and doping, optimizing the perovskite surface morphology, along with others. This article will also discuss the hole transport free and electron transport free MAPbI3PSCs.

     
    more » « less