skip to main content


Title: Origins of the Photocurrent Multiplication Effect in the Polythiophene‐Based Photodetectors
Abstract

The photocurrent multiplication (PM) effect has been used to boost the device performance of polymer‐based photodetectors (PDs), but its origin is rarely addressed. In this study, the origins of the PM effect in polymer PDs based on the P3HT:PC71BM bulk heterojunction (BHJ) composite thin film, where P3HT is poly(3‐hexylthiophene), and PC71BM is [6,6]phenyl‐C71‐butyric acid methyl ester, through both computational simulation and experimental investigation are reported. Systematic studies indicate that two key factors play an important role in the realization of the PM effect in polymer PDs. One factor is the work function of the metal electrode, and the other is the PC71BM aggregations at the interface between the P3HT:PC71BM BHJ composite thin film and the metal electrode. Moreover, the results from both experimental and computational simulation indicate that the values of the current density under light illumination minus the current density in the dark of polymer PDs are increased simultaneously along with the reduction of the thickness of the P3HT:PC71BM BHJ composite thin film. The results provide an understanding of the PM effect in polymer PDs and guidance for the development of high‐performance polymer PDs based on BHJ composite thin film.

 
more » « less
Award ID(s):
1903303
NSF-PAR ID:
10390324
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Macromolecular Rapid Communications
Volume:
44
Issue:
1
ISSN:
1022-1336
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The nanoscale interpenetrating electron donor–acceptor network in organic bulk heterojunction (BHJ) solar cells results in efficient charge photogeneration but creates complex 3D pathways for charge transport. At present, little is known about the extent to which out‐of‐plane charge flow relies on lateral electrical connectivity. In this work, a procedure, based on conductive atomic force microscopy, is introduced to quantify lateral current spreading during out‐of‐plane charge transport. Using the developed approach, the dependence of lateral spreading on BHJ phase separation, composition, and molecule type (small molecule vs polymer) is studied. In the small‐molecule BHJ, 7,7′‐(4,4‐bis(2‐ethylhexyl)‐4H‐silolo[3,2‐b:4,5‐b′]dithiophene‐2,6‐diyl)bis(6‐fluoro‐4‐(5′‐hexyl‐[2,2′‐bithiophen]‐5‐yl)benzo[c]‐[1,2,5]thiadiazole):(6,6)‐Phenyl‐C71‐butyric acid methyl ester (p‐DTS(FBTTh2)2:PC71BM), an increase is observed in lateral hole current spreading as the population of donor crystallites, bearing an edge‐on molecular orientation, is increased. When integrated into BHJs, the polymer donor poly(3‐hexylthiophene‐2,5‐diyl) (P3HT) leads to greater lateral hole current spreading and more spatially uniform charge transport than the small‐molecule donor, owing to in‐plane charge transport along the polymer backbone. Through the newly introduced electrical characterization scheme, these experiments bring to light the role of lateral electrical connectivity in assisting charge navigation across BHJs.

     
    more » « less
  2.  
    more » « less
  3. Abstract

    Supercapacitors are beneficial as energy storage devices and can obtain high capacitance values greater than conventional capacitors and high power densities compared to batteries. However, in order to improve upon the overall cost, energy density, and charge-discharge rates, the electrode material of supercapacitors needs to be fine-tuned with an inexpensive, high conducting source. We prepared a Co(III) complex and polypyrrole (PPy) composite thin films (CoN4-PPy) that was electrochemically deposited on the surface of a glassy carbon working electrode. Cyclic voltammetry studies indicate the superior performance of CoN4-PPy in charge storage in acidic electrolyte compared to alkaline and organic solutions. The CoN4-PPy material generated the highest amount of specific capacitance (up to 721.9 F/g) followed by Co salt and PPy (Co-PPy) material and PPy alone. Cyclic performance studies showed the excellent electrochemical stability of the CoN4-PPy film in the acidic medium. Simply electrochemically depositing an inexpensive Co(III) complex with a high electrically conducting polymer of PPy delivered a superior electrode material for supercapacitor applications. Therefore, the results indicate that novel thin films derived from Co(III) metal complex and PPy can store a large amount of energy and maintain high stability over many cycles, revealing its excellent potential in supercapacitor devices.

     
    more » « less
  4. This review provides a comprehensive overview on the development of highly active and durable platinum catalysts with ultra-low Pt loadings for polymer electrolyte membrane fuel cells (PEMFCs) through a combined mathematical modeling and experimental work. First, simulation techniques were applied to evaluate the validity of the Tafel approximation for the calculation of the mass activity (MA) and specific activity (SA). A one-dimensional agglomeration model was developed and solved to understand the effects of exchange current density, porosity, agglomerate size, Nafion®film thickness, and Pt loading on the MA and SA. High porosity (> 60%) and agglomerations at high Pt loadings cause the loss of the Tafel approximation and consequently the decrease in MA and SA. A new structure parameter was introduced to estimate the real porous structure using the fractal theory. The volumetric catalyst density was corrected by the fractal dimension (measured by Hg porosimetry), which gave a good agreement with the experimental values. The loading-dependent Tafel equation was then derived, which contains both the utilization and the non-linear scaling factor. Second, activated carbon composite support (ACCS) with optimized surface area, porosity, pore size, and pore size distribution was developed. The hydrophilic/hydrophobic ratio, structural properties (amorphous/crystalline ratio), and the number of active sites were optimized through metal-catalyzed pyrolysis. Stability of ACCS and Pt/ACCS were evaluated using an accelerated stress test (AST). The results indicated that Pt/ACCS showed no significant loss of MA and power density after 5,000 cycles at 1.0–1.5 V, while the commercial Pt/C catalysts showed drastic losses of MA and power density. Finally, monolayers of compressed Pt (core–shell-type Pt3Co1) catalysts were structured by diffusing Co atoms (previously embedded in ACCS) into Pt. Compressive Pt lattice (Pt*) catalysts were synthesized through an annealing procedure developed at the University of South Carolina (USC). The Pt*/ACCS catalyst showed high initial power density (rated) of 0.174 gPtkW−1and high stability (24 mV loss) at 0.8 A cm−2after 30,000 cycles (0.6–1.0 V). The outstanding performance of Pt*/ACCS is due to the synergistic effect of ACCS and compressive Pt*lattice.

     
    more » « less
  5. Abstract

    Polymer solar cells (PSCs) with a bulk heterojunction (BHJ) device structure have incredible advantages, such as low‐cost fabrication and flexibility. However, the power conversion efficiency (PCE) of BHJ PSCs needs to be further improved to realize their practical applications. In this study, boosted PCEs from PSCs based on BHJ composites incorporated with Fe3O4magnetic nanoparticles (MNPs), aligned by an external magnetic field (EMF), are reported. It is found that the coercive electric field within the Fe3O4MNPs generated by the EMF has a strong and positive influence on the charge generation, which results in a more than 10% increase in free charge carriers. Moreover, the coercive electric field speeds up the charge carrier transport and suppresses charge carrier recombination within PSCs. In addition, a shortened extraction time makes charge carriers more likely to make it to the electrodes. As a result, more than 15% enhancement in PCE is observed from the PSCs based on the BHJ composite incorporated with the Fe3O4MNPs and the EMF as compared with that based on the BHJ composite thin film. This work indicates that the incorporation of MNPs and the EMF is a facile way to enhance the PCEs of PSCs.

     
    more » « less