The advent of ion traps as cooling devices has revolutionized ion spectroscopy as it is now possible to efficiently cool ions vibrationally and rotationally to levels where truly high-resolution experiments are now feasible. Here, we report the first results of a new experimental apparatus that couples a cryogenic 3D Paul trap with a laser vaporization cluster source for high-resolution photoelectron imaging of cold cluster anions. We have demonstrated the ability of the new apparatus to efficiently cool BiO − and BiO 2 − to minimize vibrational hot bands and allow high-resolution photoelectron images to be obtained. The electron affinities of BiO and BiO 2 are measured accurately for the first time to be 1.492(1) and 3.281(1) eV, respectively. Vibrational frequencies for the ground states of BiO and BiO 2 , as well as those for the anions determined from temperature-dependent studies, are reported.
more »
« less
New Photoelectron–Valence Electron Interactions Evident in the Photoelectron Spectrum of Gd 2 O –
More Like this
-
-
We report a temperature-controlled photoelectron imaging study of SbO2–, produced from a laser vaporization source and cooled in a cryogenic 3D Paul trap. Vibrationally resolved photoelectron spectra are obtained for the ground state detachment transition, yielding the bending frequencies for both SbO2 and SbO2–. Franck-Condon simulations also allow the estimate of the vibrational temperature of the trapped SbO2– anion. A near-threshold spectrum of SbO2– at a photon energy of 3.4958 eV reveals partially resolved rotational structure for the 0-0 transition, which yields an accurate electron affinity of 3.4945 ± 0.0004 eV for SbO2. The rotational simulation also yields an estimated rotational temperature of the trapped ions.more » « less