- Award ID(s):
- 1936005
- PAR ID:
- 10330070
- Date Published:
- Journal Name:
- Annual International Conference of the IEEE Engineering in Medicine and Biology Society
- ISSN:
- 2375-7477
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)With the goal of achieving consistence in interpretation of an arterial pulse signal between its vibration model and its hemodynamic relations and improving its physiological implications in our previous study, this paper presents an improved vibration-model-based analysis for estimation of arterial parameters: elasticity (E), viscosity (), and radius (r0) at diastolic blood pressure (DBP) of the arterial wall, from a noninvasively measured arterial pulse signal. The arterial wall is modeled as a unit-mass vibration model, and its spring stiffness (K) and damping coefficient (D) are related to arterial parameters. Key features of a measured pulse signal and its first-order and second-order derivatives are utilized to estimate the values of K and D. These key features are then utilized in hemodynamic relations, where their interpretation is consistent with the vibration model, to estimate the value of r0 from K and D. Consequently, E, , and pulse wave velocity (PWV) are also estimated from K and D. The improved vibration-model-based analysis was conducted on pulse signals of a few healthy subjects measured under two conditions: at-rest and immediately post-exercise. With E, r0, and PWV at-rest as baseline, their changes immediately post-exercise were found to be consistent with the related findings in the literature. Thus, this improved vibration-model-based analysis is validated and contributes to estimation of arterial parameters with better physiological implications, as compared with its previous counterpart.more » « less
-
null (Ed.)This paper presents a theoretical study of sensor-artery interaction in arterial pulse signal measurement using a tactile sensor. A measured pulse signal is a combination of the true pulse signal in an artery, the arterial wall, its overlying tissue, and the sensor, under the influence of hold down pressure exerted on the sensor and motion artifact. The engineering essence of sensor-artery interaction is identified as elastic wave propagation in the overlying tissue and pulse signal transmission into the sensor at the skin surface, and different lumped-element models of sensor-artery interaction are utilized to examine how the involved factors affect a measured pulse signal. Achieving ideal sensor-artery conformity is the key for acquiring a measured pulse signal with minimum distortion. Hold-down pressure, sensor design, and overlying tissue collectively contribute to ideal sensor-artery conformity. Under ideal sensor-artery conformity, both the sensor and overlying tissue cause an increase in the measured stiffness of the arterial wall; damping and inertia of the sensor and overlying tissue also affects a measured pulse signal. The theoretical study shows the need to tailor the sensor design for different arteries and individual, and interpret estimated arterial indices with consideration of individual variations as well as instruments used.more » « less
-
Abstract Pulmonary vascular distensibility (
α ) is a marker of the ability of the pulmonary vasculature to dilate in response to increases in cardiac output, which protects the right ventricle from excessive increases in afterload. α measured with exercise predicts clinical outcomes in pulmonary hypertension (PH) and heart failure. In this study, we aim to determine if α measured with a passive leg raise (PLR) maneuver is comparable to α with exercise. Invasive cardiopulmonary exercise testing (iCPET) was performed with hemodynamics recorded at three stages: rest, PLR and peak exercise. Four hemodynamic phenotypes were identified (2019 ECS guidelines): pulmonary arterial hypertension (PAH) (n = 10), isolated post‐capillary (Ipc‐PH) (n = 18), combined pre‐/post‐capillary PH (Cpc‐PH) (n = 15), and Control (no significant PH at rest and exercise) (n = 7). Measurements of mean pulmonary artery pressure, pulmonary artery wedge pressure, and cardiac output at each stage were used to calculate α. There was no statistical difference between α‐exercise and α‐PLR (0.87 ± 0.68 and 0.78 ± 0.47% per mmHg, respectively). The peak exercise‐ and PLR‐based calculations of α among the four hemodynamic groups were: Ipc‐PH = Ex: 0.94 ± 0.30, PLR: 1.00 ± 0.27% per mmHg; Cpc‐PH = Ex: 0.51 ± 0.15, PLR: 0.47 ± 0.18% per mmHg; PAH = Ex: 0.39 ± 0.23, PLR: 0.34 ± 0.18% per mmHg; and the Control group: Ex: 2.13 ± 0.91, PLR: 1.45 ± 0.49% per mmHg. Patients withα ≥ 0.7% per mmHg had reduced cardiovascular death and hospital admissions at 12‐month follow‐up. In conclusion, α‐PLR is feasible and may be equally predictive of clinical outcomes as α‐exercise in patients who are unable to exercise or in programs lacking iCPET facilities. -
With consideration of a full set of mechanical properties: elasticity, viscosity, and axial and circumferential initial tensions, and radial and axial motion of the arterial wall, this paper presents a theoretical study of pulse wave propagation in arteries and evaluates pulse wave velocity and transmission at the carotid artery (CA) and the ascending aorta (AA). The arterial wall is treated as an initially-tensioned, isotropic, thin-walled membrane, and the flowing blood in the artery is treated as an incompressible Newtonian fluid. Pulse wave propagation in arteries is formulated as a combination of the governing equations of radial and axial motion of the arterial wall, the governing equations of flowing blood in the artery, and the interface conditions that relate the arterial wall variables to the flowing blood variables. We conduct a free wave propagation analysis of the problem and derive a frequency equation. The solution to the frequency equation indicates two waves: Young wave and Lamb wave, propagating in the arterial tree. With the related values at the CA and the AA, we evaluate the influence of arterial wall properties on their wave velocity and transmission, and find the opposite effects of axial and circumferential initial tensions on transmission of both waves. Physiological implications of such influence are discussed.more » « less
-
Abstract Pulsatile pressure at an artery is a collection of harmonics of the heartbeat. This study examines harmonics of pulsatile pressure at different ages and its effect on other pulsatile parameters and waveform-based clinical indices. Based on a vibrating-string model of the arterial tree, wave velocity and characteristic impedance are related to arterial stiffness and radius. Blood velocity, wall shear stress (WSS), and driving force on the left ventricle (LV) are related to pulsatile pressure. Reflection magnitude and return time are related to input impedance. These relations are applied to pulsatile pressure and blood velocity at the ascending aorta (AA) and the carotid artery (CA) at different ages in a database to calculate harmonics of all the pulsatile parameters and reflection magnitude and return time at each harmonic. Harmonics of pulsatile pressure varies with aging and between the two arteries. Reflection magnitude and return time vary between harmonics. While wave reflection manifests the arterial tree (i.e., arterial stiffness and radius) and termination, harmonics of pulsatile pressure is a combination of the LV, the arterial tree, and termination. Harmonics of pulsatile pressure dictates harmonics of WSS and affects endothelial function. Harmonics of pulsatile pressure needs to serve as an independent clinical index indicative of the LV function and endothelial function. Reflection magnitude and return time of the 1st harmonic of pulsatile pressure serve as clinical indices indicative of arterial stiffness and radius.