Self-assembling DNA crystals have emerged over the last two decades as an efficient and effective means of organizing matter at the nanoscale, but functionalization of these lattices has proved challenging as physiological buffer conditions are required to maintain structural integrity. In this manuscript, we demonstrate the silicification of porous DNA crystals using sol-gel chemistry. We identify reaction conditions that produce the minimum coating thickness to confer environmental protection, and subsequently measure the protective ability of the silica coating to various stressors, including heat, low ionic strength solution, organic solvents, and unprotected flash freezing. By soaking ions and dyes into the lattice after silica coating, we demonstrate that the crystals maintain their pores, and that the major groove of the DNA can still be used as a site-specific template for chemical modifications. We image a library of different crystal motifs by electron microscopy and confirm the presence of silica using energy dispersive spectroscopy. Finally, we perform X-ray diffraction on these crystals, both with and without cryoprotection and determine the structure of the DNA frame, underscoring the conserved molecular order after coating. We anticipate these mesoporous silica composites for use in applications involving extreme, non-physiological conditions and for experiments which utilize the DNA glass described here as a template for surface science.
more »
« less
Stabilizing DNA–Protein Co-Crystals via Intra-Crystal Chemical Ligation of the DNA
Protein and DNA co-crystals are most commonly prepared to reveal structural and functional details of DNA-binding proteins when subjected to X-ray diffraction. However, biomolecular crystals are notoriously unstable in solution conditions other than their native growth solution. To achieve greater application utility beyond structural biology, biomolecular crystals should be made robust against harsh conditions. To overcome this challenge, we optimized chemical DNA ligation within a co-crystal. Co-crystals from two distinct DNA-binding proteins underwent DNA ligation with the carbodiimide crosslinking agent 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) under various optimization conditions: 5′ vs. 3′ terminal phosphate, EDC concentration, EDC incubation time, and repeated EDC dose. This crosslinking and DNA ligation route did not destroy crystal diffraction. In fact, the ligation of DNA across the DNA–DNA junctions was clearly revealed via X-ray diffraction structure determination. Furthermore, crystal macrostructure was fortified. Neither the loss of counterions in pure water, nor incubation in blood serum, nor incubation at low pH (2.0 or 4.5) led to apparent crystal degradation. These findings motivate the use of crosslinked biomolecular co-crystals for purposes beyond structural biology, including biomedical applications.
more »
« less
- Award ID(s):
- 2003748
- PAR ID:
- 10330084
- Date Published:
- Journal Name:
- Crystals
- Volume:
- 12
- Issue:
- 1
- ISSN:
- 2073-4352
- Page Range / eLocation ID:
- 49
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
DNA double helices containing metal-mediated DNA (mmDNA) base pairs are constructed from Ag+ and Hg2+ ions between pyrimidine:pyrimidine pairs with the promise of nanoelectronics. Rational design of mmDNA nanomaterials is impractical without a complete lexical and structural description. Here, the programmability of structural DNA nanotechnology toward its founding mission of self-assembling a diffraction platform for biomolecular structure determination is explored. The tensegrity triangle is employed to build a comprehensive structural library of mmDNA pairs via X-ray diffraction and generalized design rules for mmDNA construction are elucidated. Two binding modes are uncovered: N3-dominant, centrosymmetric pairs and major groove binders driven by 5-position ring modifications. Energy gap calculations show additional levels in the lowest unoccupied molecular orbitals (LUMO) of mmDNA structures, rendering them attractive molecular electronic candidates.more » « less
-
Abstract DNA double helices containing metal‐mediated DNA (mmDNA) base pairs are constructed from Ag+and Hg2+ions between pyrimidine:pyrimidine pairs with the promise of nanoelectronics. Rational design of mmDNA nanomaterials is impractical without a complete lexical and structural description. Here, the programmability of structural DNA nanotechnology toward its founding mission of self‐assembling a diffraction platform for biomolecular structure determination is explored. The tensegrity triangle is employed to build a comprehensive structural library of mmDNA pairs via X‐ray diffraction and generalized design rules for mmDNA construction are elucidated. Two binding modes are uncovered: N3‐dominant, centrosymmetric pairs and major groove binders driven by 5‐position ring modifications. Energy gap calculations show additional levels in the lowest unoccupied molecular orbitals (LUMO) of mmDNA structures, rendering them attractive molecular electronic candidates.more » « less
-
Abstract Structural, regulatory and enzymatic proteins interact with DNA to maintain a healthy and functional genome. Yet, our structural understanding of how proteins interact with DNA is limited. We present MELD-DNA, a novel computational approach to predict the structures of protein–DNA complexes. The method combines molecular dynamics simulations with general knowledge or experimental information through Bayesian inference. The physical model is sensitive to sequence-dependent properties and conformational changes required for binding, while information accelerates sampling of bound conformations. MELD-DNA can: (i) sample multiple binding modes; (ii) identify the preferred binding mode from the ensembles; and (iii) provide qualitative binding preferences between DNA sequences. We first assess performance on a dataset of 15 protein–DNA complexes and compare it with state-of-the-art methodologies. Furthermore, for three selected complexes, we show sequence dependence effects of binding in MELD predictions. We expect that the results presented herein, together with the freely available software, will impact structural biology (by complementing DNA structural databases) and molecular recognition (by bringing new insights into aspects governing protein–DNA interactions).more » « less
-
Abstract A quasi‐one‐dimensional organic semiconductor, hepta(p‐phenylene vinylene) (HPV), was incorporated into a DNA tensegrity triangle motif using a covalent strategy. 3D arrays were self‐assembled from an HPV‐DNA pseudo‐rhombohedron edge by rational design and characterized by X‐ray diffraction. Templated by the DNA motif, HPV molecules exist as single‐molecule fluorescence emitters at the concentration of 8 mM within the crystal lattice. The anisotropic fluorescence emission from HPV‐DNA crystals indicates HPV molecules are well aligned in the macroscopic 3D DNA lattices. Sophisticated nanodevices and functional materials constructed from DNA can be developed from this strategy by addressing functional components with molecular accuracy.more » « less
An official website of the United States government

