Abstract I employ an elasticity‐based method to invert a geodetically derived surface velocity field in the western US using for present‐day surface strain rate fields with uncertainties. The method uses distributed body forces in a thin elastic sheet and allows for discontinuities in velocity across creeping faults using the solution for dislocations in a thin elastic plate. I compare the strain rate fields with previously published stress orientations and moment rates from geological slip rate data and previous geodetic studies. Geologic and geodetic moment rates are calculated using slip rate and off‐fault strain rates from the 2023 US National Seismic Hazard Model (NSHM) deformation models. I find that computed total geodetic moment rates are higher than NSHM summed moment rates on faults for all regions of the western US except the highest deforming rate regions including the Western Transverse Ranges and the northern and southern San Andreas Fault (SAF) system in California. Computed geodetic moment rates are comparable to the moment rates derived from the geodetically based NSHM deformation models in all regions. I find systematic differences in orientations of maximum horizontal shortening rate and maximum horizontal compressive stress in the Pacific Northwest region and along much of the SAF system. In the Pacific Northwest, the maximum horizontal stress orientations are rotated counterclockwise 40–90° relative to the maximum horizontal strain rate directions. Along the SAF system, the maximum horizontal stresses are rotated systematically 25–40° clockwise (closer to fault normal) relative to the strain rates.
more »
« less
Geographic disparities in COVID-19 case rates are not reflected in seropositivity rates using a neighborhood survey in Chicago
- Award ID(s):
- 2035114
- PAR ID:
- 10330126
- Date Published:
- Journal Name:
- Annals of Epidemiology
- Volume:
- 66
- Issue:
- C
- ISSN:
- 1047-2797
- Page Range / eLocation ID:
- 44 to 51
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Heterotrophic bacteria in the surface ocean play a critical role in the global carbon cycle and the magnitude of this role depends on their growth rates. Although methods for determining bacterial community growth rates based on incorporation of radiolabeled thymidine and leucine are widely accepted, they are based on a number of assumptions and simplifications. We sought to independently assess these methods by comparing bacterial growth rates to turnover rates of bacterial membranes using previously published methods in a range of open‐ocean settings. We found that turnover rates for heterotrophic bacterial phospholipids averaged 0.80 ± 0.35 d−1. This was supported by independent measurements of turnover rates of a membrane‐bound pigment in photoheterotrophic bacteria, bacteriochlorophyll a(0.85 ± 0.09 d−1). By contrast, bacterial growth rates measured by uptake of radiolabeled thymidine and leucine were 0.12 ± 0.08 d−1, well within the range expected from the literature. We explored whether the discrepancies between phospholipid turnover rates and bacterial growth rate could be explained by membrane recycling/remodeling and other factors, but were left to conclude that the radiolabeled thymidine and leucine incorporation methods substantially underestimated actual bacterial growth rates. We use a simple model to show that the faster bacterial growth rates we observed can be accommodated within the constraints of the microbial carbon budget if bacteria are smaller than currently thought, grow with greater efficiency, or some combination of these two factors.more » « less