skip to main content


Title: Mesosphere and Lower Thermosphere Changes Associated With the 2 July 2019 Total Eclipse in South America Over the Andes Lidar Observatory, Cerro Pachon, Chile
Abstract

This article presents the results of a week of observations around the 2 July 2019, total Chilean eclipse. The eclipse occurred between 19:22 and 21:46 UTC, with complete sun disc obscuration at 20:38–20:40 UTC (16:38–16:40 LT) over the Andes Lidar Observatory (ALO) at (30.3°S, 70.7°W). Observations were carried out using ALO instrumentation with the goal to observe possible eclipse‐induced effects on the mesosphere and lower thermosphere region (MLT; 75–105 km altitude). To complement our data set, we have also utilized TIMED/SABER temperatures and ionosonde electron density measurements taken at the University of La Serena's Juan Soldado Observatory. Observed events include an unusual fast, bow‐shaped gravity wave structure in airglow images, mesosphere temperature mapper brightness as well as in lidar temperature with 150 km horizontal wavelength 24 min observed period, and vertical wavelength of 25 km. Also, a strong zonal wind shear above 100 km in meteor radar scans as well as the occurrence of a sporadic E layer around 100 km from ionosonde measurements. Finally, variations in temperature and density and the presence of a descending sporadic sodium layer near 98 km were seen in lidar data. We discuss the effects of the eclipse in the MLT, which can shed light on a sparse set of measurements during this type of event. Our results point out several effects of eclipse‐associated changes in the atmosphere below and above but not directly within the MLT.

 
more » « less
Award ID(s):
1759471 1828589 1734267
NSF-PAR ID:
10367964
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
127
Issue:
11
ISSN:
2169-897X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper studies the three-dimensional (3-D) ionospheric electron density variation over the continental US and adjacent regions during the August 2017 Great American Solar Eclipse event, using Millstone Hill incoherent scatter radar observations, ionosonde data, the Swarm satellite measurements, and a new TEC-based ionospheric data assimilation system (TIDAS). The TIDAS data assimilation system can reconstruct a 3-D electron density distribution over continental US and adjacent regions, with a spatial–temporal resolution of 1∘× 1∘ in latitude and longitude, 20 km in altitude, and 5 min in universal time. The combination of multi-instrumental observations and the high-resolution TIDAS data assimilation products can well represent the dynamic 3-D ionospheric electron density response to the solar eclipse, providing important altitude information and fine-scale details. Results show that the eclipse-induced ionospheric electron density depletion can exceed 50% around the F2-layer peak height between 200 and 300 km. The recovery of electron density following the maximum depletion exhibits an altitude-dependent feature, with lower altitudes exhibiting a faster recovery than the F2 peak region and above. The recovery feature was also characterized by a post-eclipse electron density enhancement of 15–30%, which is particularly prominent in the topside ionosphere at altitudes above 300 km.

     
    more » « less
  2. Amplitude growth rates of quasi-monochromatic gravity waves were estimated and compared from multiple instrument measurements carried out in Brazil. Gravity wave parameters, such as the wave amplitude and growth rate in distinct altitudes, were derived from sodium lidar density and nightglow all-sky images. Lidar observations were carried out in São Jose dos Campos (23 ∘ S, 46 ∘ W) from 1994 to 2004, while all-sky imagery of multiple airglow layers was conducted in Cachoeira Paulista (23 ∘ S, 45 ∘ W) from 1999–2000 and 2004–2005. We have found that most of the measured amplitude growth rates indicate dissipative behavior for gravity waves identified in both lidar profiles and airglow image datasets. Only a small fraction of the observed wave events (4% imager; 9% lidar) are nondissipative (freely propagating waves). Our findings also show that imager waves are strongly dissipated within the mesosphere and lower thermosphere region (MLT), decaying in amplitude in short distances (<12 km), while lidar waves tend to maintain a constant amplitude within that region. Part of the observed waves (16% imager; 36% lidar) showed unchanging amplitude with altitude (saturated waves). About 51.6% of the imager waves present strong attenuation (overdamped waves) in contrast with 9% of lidar waves. The general saturated or damped behavior is consistent with diffusive filtering processes imposing limits to amplitude growth rates of the observed gravity waves. 
    more » « less
  3. Abstract

    The long‐term statistical characteristics of high‐frequency quasi‐monochromatic gravity waves are presented using multi‐year airglow images observed at Andes Lidar Observatory (ALO, 30.3°S, 70.7°W) in northern Chile. The distribution of primary gravity wave parameters including horizontal wavelength, vertical wavelength, intrinsic wave speed, and intrinsic wave period are obtained and are in the ranges of 20–30 km, 15–25 km, 50–100 m s−1, and 5–10 min, respectively. The duration of persistent gravity wave events captured by the imager approximately follows an exponential distribution with an average duration of 7–9 min. The waves tend to propagate against the local background winds and show evidence of seasonal variations. In austral winter (May–August), the observed wave occurrence frequency is higher, and preferential wave propagation is equator‐ward. In austral summer (November–February), the wave occurrence frequency is lower, and the waves mostly propagate pole‐ward. Critical‐layer filtering plays a moderate role in determining the preferential propagation direction in certain months, especially for waves with a smaller observed phase speed (less than typical background winds). The observed wave occurrence and preferential propagation direction are related to the locations of convection activities nearby and their relative distance to ALO. However, direct wave generations are less likely due to the large distance between the ALO and convective sources. Other mechanisms such as secondary wave generation and possible ducted propagation should be considered. The estimated mean momentum fluxes have typical values of a few m2 s−2.

     
    more » « less
  4. Abstract. Lidar observations of the mesospheric Na layer have revealed considerablediurnal variations, particularly on the bottom side of the layer, where morethan an order-of-magnitude increase in Na density has been observed below 80&thinsp;kmafter sunrise. In this paper, multi-year Na lidar observations areutilized over a full diurnal cycle at Utah State University (USU) (41.8&thinsp;N,111.8&thinsp;W) and a global atmospheric model of Na with 0.5&thinsp;kmvertical resolution in the mesosphere and lower thermosphere (WACCM-Na) to explorethe dramatic changes of Na density on the bottom side of the layer. Photolysis of the principal reservoir NaHCO3 is shown to beprimarily responsible for the increase in Na after sunrise, amplified by theincreased rate of reaction of NaHCO3 with atomic H, which is mainlyproduced from the photolysis of H2O and the reaction of OH withO3. This finding is further supported by Na lidar observation at USUduring the solar eclipse (&gt;96&thinsp;% totality) event on 21 August 2017, when a decrease and recovery of the Na density on thebottom side of the layer were observed. Lastly, the model simulation showsthat the Fe density below around 80&thinsp;km increases more strongly and earlierthan observed Na changes during sunrise because of the considerably fasterphotolysis rate of its major reservoir of FeOH.

     
    more » « less
  5. Abstract

    The three‐dimensional computerized ionospheric tomography (3DCIT) technique is used to reconstruct the spatial distribution of storm‐enhanced density (SED) based on the global positioning system total electron content measurements over the North American area during the 17 March 2013 storm. The reconstruction results are carefully validated with observations from three ionosonde stations, the constellation observing system for meteorology, ionosphere, and climate (COSMIC) radio occultations, and the Millstone Hill incoherent scatter radar. The electron density profiles from the 3DCIT reconstruction show a good agreement with the ionosonde and COSMIC electron density profiles. The 3DCIT‐derived electron density difference between the storm day of 17 March and the quiet day of 16 March also captures the similar SED plume signature that was observed by the Millstone Hill incoherent scatter radar. The 3DCIT reconstruction allows us for the first time to unveil the 3‐D configuration of the SED plume and its spatiotemporal evolution. It was found that the SED plume first appeared around 400 km and then expanded downward to ~300 km as well as upward to ~500 km over the course of a 3‐hr period from 19 to 22 UT on 17 March. Our study also showed that the density enhancement within the SED plume occurred mostly above the storm timeFlayer peak height.

     
    more » « less