This content will become publicly available on October 1, 2022
- Award ID(s):
- 1720633
- Publication Date:
- NSF-PAR ID:
- 10330181
- Journal Name:
- Science Advances
- Volume:
- 7
- Issue:
- 40
- ISSN:
- 2375-2548
- Sponsoring Org:
- National Science Foundation
More Like this
-
Controlling magnetization dynamics is imperative for developing ultrafast spintronics and tunable microwave devices. However, the previous research has demonstrated limited electric-field modulation of the effective magnetic damping, a parameter that governs the magnetization dynamics. Here, we propose an approach to manipulate the damping by using the large damping enhancement induced by the two-magnon scattering and a nonlocal spin relaxation process in which spin currents are resonantly transported from antiferromagnetic domains to ferromagnetic matrix in a mixed-phased metallic alloy FeRh. This damping enhancement in FeRh is sensitive to its fraction of antiferromagnetic and ferromagnetic phases, which can be dynamically tuned bymore »
-
Abstract Multi-functional thin films of boron (B) doped Cr 2 O 3 exhibit voltage-controlled and nonvolatile Néel vector reorientation in the absence of an applied magnetic field, H . Toggling of antiferromagnetic states is demonstrated in prototype device structures at CMOS compatible temperatures between 300 and 400 K. The boundary magnetization associated with the Néel vector orientation serves as state variable which is read via magnetoresistive detection in a Pt Hall bar adjacent to the B:Cr 2 O 3 film. Switching of the Hall voltage between zero and non-zero values implies Néel vector rotation by 90 degrees. Combined magnetometry, spin resolved inverse photoemission,more »
-
Abstract The manipulation of antiferromagnetic order in magnetoelectric Cr 2 O 3 using electric field has been of great interest due to its potential in low-power electronics. The substantial leakage and low dielectric breakdown observed in twinned Cr 2 O 3 thin films, however, hinders its development in energy efficient spintronics. To compensate, large film thicknesses (250 nm or greater) have been employed at the expense of device scalability. Recently, epitaxial V 2 O 3 thin film electrodes have been used to eliminate twin boundaries and significantly reduce the leakage of 300 nm thick single crystal films. Here we report the electricalmore »
-
Abstract The interconversion of charge and spin currents via spin-Hall effect is essential for spintronics. Energy-efficient and deterministic switching of magnetization can be achieved when spin polarizations of these spin currents are collinear with the magnetization. However, symmetry conditions generally restrict spin polarizations to be orthogonal to both the charge and spin flows. Spin polarizations can deviate from such direction in nonmagnetic materials only when the crystalline symmetry is reduced. Here, we show control of the spin polarization direction by using a non-collinear antiferromagnet Mn 3 GaN, in which the triangular spin structure creates a low magnetic symmetry while maintainingmore »
-
Abstract The Rashba effect has recently attracted great attention owing to emerging physical properties associated with it. The interplay between the Rashba effect and the Zeeman effect, being produced by the exchange field, is expected to broaden the range of these properties and even result in novel phenomena. Here we predict an insulator-to-conductor transition driven by the Rashba–Zeeman effect. We first illustrate this effect using a general Hamiltonian model and show that the insulator-to-conductor transition can be triggered under certain Rashba and exchange-field strengths. Then, we exemplify this phenomenon by considering an Ag2Te/Cr2O3heterostructure, where the electronic structure of the Ag2Temore »