skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Role of Physics Culture in Shaping In-Service Physics Teacher Identities and Framings of Equity: Two Case Studies
Physics is perceived to have a culture of exclusion, which includes not embracing individuals from certain demographics who are underrepresented in the field. Many who are from underrepresented groups have stated they feel impacted by cultural pressures to assimilate to what is traditionally considered a “physics person.” In order to better understand these cultural pressures this study examines statements from two physics teachers who participated in a summer professional development (PD) workshop. Throughout the summer PD, the two teachers made statements that described how physics culture impacted their identity and understanding of equity, which ultimately shaped their approach towards teaching. Analysis of teachers’ statements showed that physics culture impacted the teachers' views on instruction in the areas of inclusivity and shaping students' physics identity. This study has implications for research on the role of physics culture and how it impacts underrepresented students’ and teachers' identity and approach to equity.  more » « less
Award ID(s):
1936601
PAR ID:
10330252
Author(s) / Creator(s):
;
Editor(s):
Bennett, M. B.; Frank, B. W.; Vieyra, R. E.
Date Published:
Journal Name:
Physics Education Research Conference Proceedings
Page Range / eLocation ID:
264 to 269
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Gutiérrez’s equity framework, derived from mathematics education research, defines equity in terms of four dimensions: , , , and . and yield outcomes that reify the while and transform schooling to redistribute power. We use Gutiérrez’s equity framework to study discourse about equity from 36 high school physics teachers who participated in an equity-focused professional development workshop. We found that the teachers’ equity discourse often includes aspects of the identity dimension, yet teachers tend to frame identity using what we call a deficit lens. That is, although teachers agree that student identity matters in equity work, they often treat student identity as a way to support and and as a reflection of why students are not “successful.” In Gutiérrez’s words, this means centering equity work on teaching students to “play the game.” We also found that the power dimension, which supports students in “changing the game,” tends to be rare in teachers’ discourse about equity and is often presented with varied interpretations. Our findings then suggest that teachers’ equity framings of identity and power reflect physics education scholarship and dominant narratives, which leads to the call for a collective effort to challenge and reframe identity in physics in relation to power. 
    more » « less
  2. Physics teachers’ definitions of equity inform how they identify inequity and take action to transform it. In this paper, we adapted Gutiérrez’s equity framework from mathematics education research to physics education research. The framework defines equity in terms of four dimensions: access , achievement , identity , and power . We used this equity framework to characterize the equity conceptions shared by 23 teachers who participated in an equity-focused professional development. We found that the access and achievement dimensions of equity are popular with teachers compared to the identity and power dimensions, and that teachers share a common understanding of conceptions of access and achievement in ways that is consistent with educational literature and discourses. 
    more » « less
  3. Porter, Leo; Brown, Neil; Morrison, Briana; Montero, Calkin (Ed.)
    Indigenous communities remain significantly underrepresented in computer science (CS) and STEM fields, facing persistent barriers such as limited access to resources, infrastructure, and culturally relevant instruction. This study investigated how educators serving Indigenous populations designed and implemented culturally responsive computing (CRC)[2] curricula within a long-term professional development program grounded in a design-based research framework. The study examined how sustained, collaborative support enabled educators to effectively integrate Indigenous cultural knowledge, values, and practices into computer science education. Seven secondary teachers who work in schools in Arizona and New Mexico with over 90% Native American enrollment participated in a two-year professional development program called Let’s Talk Code Teaching Fellow. The program consisted of twelve online modules,weekly virtual meetings, in-personworkshops, and conference participation[3]. Following the DBR framework [1], teachers engaged in iterative cycles of lesson design, implementation, and revision, creating and teaching three culturally relevant computer science lessons. They received feedback from fellow teachers and research teams, allowing them to improve the connection between computing and cultural relevance in their lessons. The study employed a mixed-methods approach to data collection and analysis. Qualitative data included 14 finalized lesson plans, teacher reflections, teacher interviews, and classroom observation notes, which were thematically analyzed to identify common instructional practices and challenges, as well as strategies that connect culture and computing. Our findings showed that teachers sustained local culture by integrating Indigenous languages and art and innovative computing tools such as Scratch, micro: bit, and Sphero robots into their computing lessons. Teachers reported an increase in their confidence in computer science instruction following the long-term PD and benefited from a strong professional learning community. 
    more » « less
  4. Computer science (CS) education is plagued by a gender divide, with few girls and women participating in this high-status discipline. A proven strategy to broaden participation for girls and other underrepresented students interested in CS is the availability of teacher preparation that requires classroom teachers to grow their knowledge of CS content as well as the pedagogical practices that enhance inclusive learning opportunities for historically underrepresented students. This case study describes the design and impact of an Online Professional Development (PD) for CS teachers, a year-long PD program aimed at broadening participation in the United States. Using survey and observation data from more than 200 participants over three years in PD settings, this paper examines how the design of an online learning community model of PD provides an inclusive venue for teachers to examine their belief systems, develop inclusive pedagogical practices, and collectively transform the culture of CS classrooms to places that support all learners. Findings suggest that purposeful facilitation creates a transformative culture of “shared experience” whereby facilitators and groups of teachers engage in collaborative lesson planning and debriefing discussions, in both synchronous and asynchronous sessions. This case study can inform other online PD efforts aimed at broadening participation in computing. 
    more » « less
  5. Frank, B.; Jones, D.; Ryan, Q. (Ed.)
    In this study, we showcase the various ways high school physics teachers make connections between science content and social justice, pushing the boundary of what is counted as science content by bringing social justice engagement to the center of science learning. We analyze lessons submitted by eighteen high school physics teachers who participated in a professional development program that supported the integration of equity into their science teaching. Three themes represent teachers' approach toward integrating social justice in their science lessons: (1) investigating the nature of science in specific science concepts and re-evaluating/redefining science concepts, (2) connecting students' everyday activities with science and global social justice issues, and (3) using science knowledge to engage with and advocate for social justice issues in students' local communities. 
    more » « less