- Award ID(s):
- 1936601
- PAR ID:
- 10330265
- Editor(s):
- Bennett, M. B.; Frank, B. W.; Vieyra, R.
- Date Published:
- Journal Name:
- Physics Education Research Conference Proceedings
- Page Range / eLocation ID:
- 191 to 196
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Frank, B. ; Jones, D. ; Ryan, Q. (Ed.)In this study, we showcase the various ways high school physics teachers make connections between science content and social justice, pushing the boundary of what is counted as science content by bringing social justice engagement to the center of science learning. We analyze lessons submitted by eighteen high school physics teachers who participated in a professional development program that supported the integration of equity into their science teaching. Three themes represent teachers' approach toward integrating social justice in their science lessons: (1) investigating the nature of science in specific science concepts and re-evaluating/redefining science concepts, (2) connecting students' everyday activities with science and global social justice issues, and (3) using science knowledge to engage with and advocate for social justice issues in students' local communities.more » « less
-
Energy is one of the fundamental topics taught in high school physics. However, energy continues to betaught as an abstract concept that removes itself from the social implications energy systems have onsociety, in particular toward Indigenous communities. Given the importance of integrating discussionsaround equity into our science courses, in this study we propose a way in which energy justice can beredefined and included in physics classrooms. Redefining energy justice into physics classrooms allows usto connect energy justice to existing energy physics curriculum and lessons plans. In Summer 2020, 22physics teachers participated in a professional development that centered on discussions around energyand equity. We analyzed and coded teachers’ dialogues and conversations around energy and equity toidentify energy justice pillars. The energy justice pillars we identified formed the basis of an energy justiceframework that redefines energy justice for physics classrooms. This energy justice framework allows usto bridge the separation between physics and social justice, as they continue to be viewed as two separateschools of thought in the field of physics.more » « less
-
There is a burgeoning population of new CS teachers who are looking for additional support in their first few years of teaching, particularly around equitable and inclusive pedagogy. At the same time, there are a sizable number of teachers with multiple years of CS teaching experience who are looking for growth opportunities without taking on new courses. To address these needs, we are designing an innovative, equity-focused peer mentorship program for high school CS teachers. Mentors and mentees work together to support the mentee in identifying and achieving goals aligned to three of the CSTA Standards for CS Teachers: equity and inclusion, instructional design, and classroom practice. Mentors are provided with training and participate in a monthly community of practice focused on effective mentoring. The poster will share findings from our first year of implementation as well as examples of the materials we developed to support mentors and mentees.more » « less
-
null (Ed.)A key strategy for bringing computer science (CS) education to all students is the integration of computational thinking (CT) into core curriculum in elementary school. But teachers want to know how they can do this on top of their existing priorities. In this paper, we describe how our research-practice partnership is working to motivate, prepare, and support an elementary school to integrate equitable and inclusive computer science into core curriculum. Data were collected from teachers at a K-5 school where 65% of students are Hispanic or Latinx, 46% are English Learners, and 65% are eligible for free or reduced lunch. Data included semi-structured interviews, educators’ written reflections, and observations of classroom implementation and professional development. The findings show how the school is building buy-in and capacity among teachers by using a coaching cycle led by a Teacher on Special Assignment. The cycle of preparation, implementation, and reflection demystifies CS by helping teachers design, test, and revise coherent lesson sequences that integrate CT into their lessons. Contrasting case studies are used to illustrate what teachers learned from the cycle, including the teachers’ reasons for the integration, adaptations they made to promote equity, what the teachers noticed about their students engaging in CT, and their next steps. We discuss the strengths and the limitations of this approach to bringing CS for All.more » « less
-
Abstract The Framework for K‐12 Science Education set an ambitious goal of broadening participation in science learning for all students. Meeting this vision will involve supporting teachers in making meaningful connections with the cultural and linguistic resources their students bring to school; in essence, developing pedagogies that frame these resources as assets important to learning. In this manuscript, we present a qualitative case study of one community of high school science teachers who participated in a year‐long professional learning focused on formative assessment co‐design related to natural selection. Findings show that the process of formative assessment co‐design surfaced both deficit‐ and asset‐based statements about students' contributions. Teachers were more likely to share deficit‐based statements as compared to facilitators, whose statements were more asset‐based. This was particularly true with reference to students' prior knowledge and linguistic resources. At the same time, our analysis suggests that teachers were more likely to share more asset‐based framings of learners when practicing for and reflecting on enactment of formative assessment tasks. These findings suggest that supportive co‐design environments can encourage teachers to take more asset‐oriented views of learners. We discuss the implications of these findings for professional learning and science classroom practice.