skip to main content


Title: How do fisher responses to macroalgal overgrowth influence the resilience of coral reefs?
Abstract

Many coral reefs have shifted from coral‐ to macroalgae‐dominated community states, heightening the need to understand resilience of coral communities. Fishing on herbivores often reduces resilience of the coral state, as lower herbivory fosters macroalgal establishment. Despite the acknowledged importance of fishing, relatively little attention has been paid to how fishers change their behavior as macroalgae overgrow reefs, or how the resulting dynamic feedbacks might affect resilience. We address these questions in Moorea, French Polynesia, where local fishers target herbivorous fishes and where shifts to algal dominance have occurred on some lagoon reefs. We quantified fisher preferences for reef habitats where they target various taxa. For the two most ecologically important taxa of herbivores targeted in the fishery, parrotfish (Scaridae) and unicornfish (Naso), fishers preferred to harvest from locations with less macroalgae. We incorporated these habitat preferences into a spatially explicit social–ecological model of reef dynamics to explore consequences of changes in fishing behavior for resilience of the coral state, particularly following disturbance. Fishing that targets low‐macroalgae locations typically generates resilience by facilitating local recovery of herbivores and thus of coral in the less‐targeted macroalgae‐dominated patches. However, the resulting movement of fishers across the seascape can sometimes create fragility; if coral loss is widespread, avoidance of macroalgae concentrates fishing in patches having the highest coral cover, resulting in loss of coral via reduced herbivory. Our results emphasize that resilience and coral‐macroalgae regime shifts cannot be understood without considering humans as a dynamic part of the system.

 
more » « less
Award ID(s):
1637396
NSF-PAR ID:
10446927
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Limnology and Oceanography
Volume:
67
Issue:
S1
ISSN:
0024-3590
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Mounting evidence suggests that fishing can be a major driver of coral‐to‐macroalgae regime shifts on tropical reefs. In many small‐scale coral reef fisheries, fishers target herbivorous fishes, which can weaken coral resilience via reduced herbivory on macroalgae that then outcompete corals. Previous models that explored the effects of harvesting herbivores revealed hysteresis in the herbivory–benthic state relationship that results in bistability of coral‐ and macroalgae‐dominated states over some levels of fishing pressure, which has been supported by empirical evidence. However, past models have not accounted for the functional differences among herbivores or how fisher selectivity for different herbivore functional groups may alter the benthic dynamics and resilience. Here, we use a dynamic model that links differential fishing on two key herbivore functional groups to the outcome of competitive dynamics between coral and macroalgae. We show that reef state depends not only on the level of fishing but also on the types of herbivores targeted by fishers. Selectively fishing browsing herbivores that are capable of consuming mature macroalgae (e.g., unicornfish) increases precariousness of the coral state by moving the system close to the coral‐to‐macroalgae tipping point. By contrast, selectively harvesting grazing herbivores that are only capable of preventing macroalgae from becoming established (e.g., parrotfishes) can increase catch yields substantially more before the tipping point is reached. However, this lower precariousness with increasing fishing effort comes at the cost of increasing the range of fishing effort over which coral and macroalgae are bistable; increasing hysteresis makes a regime shift triggered by a disturbance more difficult or impractical to reverse. Our results suggest that management strategies for small‐scale coral reef fisheries should consider how functional differences among harvested herbivores coupled with fisher selectivity influence benthic dynamics in light of the trade‐off between tipping point precariousness and coral recovery dynamics following large disturbances.

     
    more » « less
  2. Ecological theory predicts that ecosystems with multiple basins of attraction can get locked in an undesired state, which has profound ecological and management implications. Despite their significance, alternative attractors have proven to be challenging to detect and characterize in natural communities. On coral reefs, it has been hypothesized that persistent coral-to-macroalgae “phase shifts” that can result from overfishing of herbivores and/or nutrient enrichment may reflect a regime shift to an alternate attractor, but, to date, the evidence has been equivocal. Our field experiments in Moorea, French Polynesia, revealed the following: (i) hysteresis existed in the herbivory–macroalgae relationship, creating the potential for coral–macroalgae bistability at some levels of herbivory, and (ii) macroalgae were an alternative attractor under prevailing conditions in the lagoon but not on the fore reef, where ambient herbivory fell outside the experimentally delineated region of hysteresis. These findings help explain the different community responses to disturbances between lagoon and fore reef habitats of Moorea over the past several decades and reinforce the idea that reversing an undesired shift on coral reefs can be difficult. Our experimental framework represents a powerful diagnostic tool to probe for multiple attractors in ecological systems and, as such, can inform management strategies needed to maintain critical ecosystem functions in the face of escalating stresses.

     
    more » « less
  3. Abstract

    Human impacts are dramatically changing ecological communities, motivating research on resilience. Tropical reefs are increasingly undergoing transitions to short algal turf, a successional community that mediates either recovery to coral by allowing recruitment or transitions to longer turf/macroalgae. Intense herbivory limits turf height; subsequently, overfishing erodes resilience of the desirable coral-dominated reef state. Increased sedimentation also erodes resilience through smothering and herbivory suppression. In spite of this critical role, most herbivory studies on tropical reefs focus on fishes, and the contribution of urchins remains under-studied. To test how different herbivory and sedimentation scenarios impact turf resilience, we experimentally simulated, in situ, four future overfishing scenarios derived from patterns of fish and urchin loss in other reef systems and two future sedimentation regimes. We found urchins were critical to short turf resilience, maintaining this state even with reduced fish herbivory and increased sediment. Further, urchins cleared sediment, facilitating fish herbivory. This study articulates the likelihood of increased reliance on urchins on impacted reefs in the Anthropocene.

     
    more » « less
  4. Caribbean coral reefs are experiencing a shift to algal dominance at the expense of stony corals. Determining the factors leading to algal phase shifts is crucial for assuring the survival of Caribbean coral reefs. In this study, factors controlling the growth of the abundant brown macroalgae Dictyota spp. were investigated by varying herbivory pressure (caging) and nutrients (fertilizer addition) on coral reefs near St. Thomas (US Virgin Islands). Experiment 1 measured Dictyota heights and percent cover at 3 sites (11-20 m depth) and showed no growth response to nutrient addition and a weak negative response to herbivory. To confirm results of Experiment 1, a caging and nutrient manipulation (Experiment 2) was conducted at one site (14 m depth) using the dependent variable Dictyota biomass. A strong negative response of growth to nutrient addition was shown, presumably because of nutrient inhibition, and an equally negative response to herbivory (loss of ~50% biomass over 21 d). The inhibitory effect of fertilization on growth was confirmed in a third experiment that showed increasing biomass loss over 4 treatment levels of increasing fertilizer addition (0 [ambient], 5, 10, 20 g). Overall, Dictyota was not nutrient limited at any sites, and was weakly controlled by herbivore populations. Factors responsible for Dictyota abundance on Caribbean reefs may reflect decreased herbivory caused by overfishing and reductions in coral cover and do not appear to be affected by recent changes in nitrogen or phosphorus load. This study reinforces the need for conservation and management of herbivores in coral reef ecosystems, to mitigate the effects from anthropogenic stressors. 
    more » « less
  5. Abstract

    Multiple stressors acting simultaneously on ecological communities are the new normal state. Stressor number and strength will increase with rising anthropogenic activity, making it critical to understand both stressor effects and interactions. Stressor temporal regimes vary in intensity, frequency, and duration, ranging from press to pulse. While stressors with different temporal regimes likely have divergent effects, this remains mostly unexplored, though there is some evidence communities are more resistant to pulse than press stressors. Coral reefs are among the most impacted marine communities, and degradation from coral to algal dominance has been attributed to increases in both local and global stressors. Overfishing, nutrient pollution, and increased sedimentation are all local stressors that have been implicated in shift dynamics. Nutrients and sediments are anthropogenically derived stressors to reefs that can have press and pulse temporal regimes. We conducted a 6‐month fully crossed factorial field experiment on algal turf communities in Moorea, French Polynesia, manipulating access by herbivores, enrichment regime, and sedimentation regime and tracked changes in benthic community composition. We found complex interactions among stressors and stressor regimes drove a series of transitions from healthy, short algal turf communities to degraded, long algal turfs, and ultimately to macroalgal‐dominated communities. While herbivory controlled final community composition after 6 months, 2‐ and 3‐way interactions among nutrient and sediment temporal stressor regimes over time drove transition dynamics, and matching of stressor temporal regimes accelerated shifts. Some stressors cryptically eroded the resilience of the community, which was only evident when the strong ecological processes that masked these effects were disrupted. Our research highlights the need to consider temporal stressor regime as well as stressor interactions, particularly in light of predicted increases in both local and global stressors and alterations to stressor temporal regimes. Our understanding of the impacts of local stressor temporal regimes is in its infancy. Here, we provide a novel demonstration that the effects of stressor temporal regime varied and multiple stressors interacted to exhibit complex, emergent interaction effects, demonstrating the need to explicitly contrast stressor temporal regimes under multiple conditions to understand how communities will respond to future challenges.

     
    more » « less