Abstract The hydrologic cycle is a fundamental component of the climate system with critical societal and ecological relevance. Yet gaps persist in our understanding of water fluxes and their response to increased greenhouse gas forcing. The stable isotope ratios of oxygen and hydrogen in water provide a unique opportunity to evaluate hydrological processes and investigate their role in the variability of the climate system and its sensitivity to change. Water isotopes also form the basis of many paleoclimate proxies in a variety of archives, including ice cores, lake and marine sediments, corals, and speleothems. These records hold most of the available information about past hydrologic variability prior to instrumental observations. Water isotopes thus provide a ‘common currency’ that links paleoclimate archives to modern observations, allowing us to evaluate hydrologic processes and their effects on climate variability on a wide range of time and length scales. Building on previous literature summarizing advancements in water isotopic measurements and modeling and describe water isotopic applications for understanding hydrological processes, this topical review reflects on new insights about climate variability from isotopic studies. We highlight new work and opportunities to enhance our understanding and predictive skill and offer a set of recommendations to advance observational and model-based tools for climate research. Finally, we highlight opportunities to better constrain climate sensitivity and identify anthropogenically-driven hydrologic changes within the inherently noisy background of natural climate variability.
more »
« less
Amazon hydrology from space: Scientific advances and future challenges
As the largest river basin on Earth, the Amazon is of major importance to the world's climate and water resources. Over the past decades, advances in satellite-based remote sensing (RS) have brought our understanding of its terrestrial water cycle and the associated hydrological processes to a new era. Here, we review major studies and the various techniques using satellite RS in the Amazon. We show how RS played a major role in supporting new research and key findings regarding the Amazon water cycle, and how the region became a laboratory for groundbreaking investigations of new satellite retrievals and analyses. At the basin-scale, the understanding of several hydrological processes was only possible with the advent of RS observations, such as the characterization of "rainfall hotspots" in the Andes-Amazon transition, evapotranspiration rates, and variations of surface waters and groundwater storage. These results strongly contribute to the recent advances of hydrological models and to our new understanding of the Amazon water budget and aquatic environments. In the context of upcoming hydrology-oriented satellite missions, which will offer the opportunity for new synergies and new observations with finer space-time resolution, this review aims to guide future research agenda towards an integrated monitoring and understanding of the Amazon water from space. Integrated multidisciplinary studies, fostered by international collaborations, set up future directions to tackle the great challenges the Amazon is currently facing, from climate change to increased anthropogenic pressure.
more »
« less
- Award ID(s):
- 1753856
- PAR ID:
- 10330397
- Date Published:
- Journal Name:
- Reviews of geophysics
- Volume:
- 59
- ISSN:
- 1944-9208
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Key challenges to regionalization of methane fluxes in the Amazon basin are the large seasonal variation in inundated areas and habitats, the wide variety of aquatic ecosystems throughout the Amazon basin, and the variability in methane fluxes in time and space. Based on available measurements of methane emission and areal extent, seven types of aquatic systems are considered: streams and rivers, lakes, seasonally flooded forests, seasonally flooded savannas and other interfluvial wetlands, herbaceous plants on riverine floodplains, peatlands, and hydroelectric reservoirs. We evaluate the adequacy of sampling and of field methods plus atmospheric measurements, as applied to the Amazon basin, summarize published fluxes and regional estimates using bottom-up and top-down approaches, and discuss current understanding of biogeochemical and physical processes in Amazon aquatic environments and their incorporation into mechanistic and statistical models. Recommendations for further study in the Amazon basin and elsewhere include application of new remote sensing techniques, increased sampling frequency and duration, experimental studies to improve understanding of biogeochemical and physical processes, and development of models appropriate for hydrological and ecological conditions.more » « less
-
Stable isotope ratios of hydrogen and oxygen have been applied to water cycle research for over 60 years. Over the past two decades, however, new data, data compilations, and quantitative methods have supported the application of isotopic data to address large-scale water cycle problems. Recent results have demonstrated the impact of climate variation on atmospheric water cycling, provided constraints on continental- to global-scale land-atmosphere water vapor fluxes, revealed biases in the sources of runoff in hydrological models, and illustrated regional patterns of water use and management by people. In the past decade, global isotopic observations have spurred new debate over the role of soils in the water cycle, with potential to impact both ecological and hydrological theory. Many components of the water cycle remain underrepresented in isotopic databases. Increasing accessibility of analyses and improved platforms for data sharing will refine and grow the breadth of these contributions in the future. ▪ Isotope ratios in water integrate information on hydrological processes over scales from cities to the globe. ▪ Tracing water with isotopes helps reveal the processes that govern variability in the water cycle and may govern future global changes. ▪ Improvements in instrumentation, data sharing, and quantitative analysis have advanced isotopic water cycle science over the past 20 years.more » « less
-
The Amazon River basin harbors some of the world’s largest wetland complexes, which are of major importance for biodiversity, the water cycle and climate, and human activities. Accurate estimates of inundation extent and its variations across spatial and temporal scales are therefore fundamental to understand and manage the basin’s resources. More than fifty inundation estimates have been generated for this region, yet major differences exist among the datasets, and a comprehensive assessment of them is lacking. Here we present an intercomparison of 29 inundation datasets for the Amazon basin, based on remote sensing only, hydrological modeling, or multi-source datasets, with 18 covering the lowland Amazon basin (elevation < 500 m, which includes most Amazon wetlands), and 11 covering individual wetland complexes (subregional datasets). Spatial resolutions range from 12.5 m to 25 km, and temporal resolution from static to monthly, spanning up to a few decades. Overall, 31% of the lowland basin is estimated as subject to inundation by at least one dataset. The long-term maximum inundated area across the lowland basin is estimated at 599,700 ± 81,800 km² if considering the three higher quality SAR-based datasets, and 490,300 ± 204,800 km² if considering all 18 datasets. However, even the highest resolution SAR-based dataset underestimates the maximum values for individual wetland complexes, suggesting a basin-scale underestimation of ~10%. The minimum inundation extent shows greater disagreements among datasets than the maximum extent: 139,300 ± 127,800 km² for SAR-based ones and 112,392 ± 79,300 km² for all datasets. Discrepancies arise from differences among sensors, time periods, dates of acquisition, spatial resolution, and data processing algorithms. The median total area subject to inundation in medium to large river floodplains (drainage area > 1,000 km²) is 323,700 km². The highest spatial agreement is observed for floodplains dominated by open water such as along the lower Amazon River, whereas intermediate agreement is found along major vegetated floodplains fringing larger rivers (e.g., Amazon mainstem floodplain). Especially large disagreements exist among estimates for interfluvial wetlands (Llanos de Moxos, Pacaya-Samiria, Negro, Roraima), where inundation tends to be shallower and more variable in time. Our data intercomparison helps identify the current major knowledge gaps regarding inundation mapping in the Amazon and their implications for multiple applications. In the context of forthcoming hydrology-oriented satellite missions, we make recommendations for future developments of inundation estimates in the Amazon and present a WebGIS application (https://amazon-inundation.herokuapp.com/) we developed to provide user-friendly visualization and data acquisition of current Amazon inundation datasets.more » « less
-
Abstract Knowledge of Antarctica's sedimentary basins builds our understanding of the coupled evolution of tectonics, ice, ocean, and climate. Sedimentary basins have properties distinct from basement‐dominated regions that impact ice‐sheet dynamics, potentially influencing future ice‐sheet change. Despite their importance, our knowledge of Antarctic sedimentary basins is restricted. Remoteness, the harsh environment, the overlying ice sheet, ice shelves, and sea ice all make fieldwork challenging. Nonetheless, in the past decade the geophysics community has made great progress in internationally coordinated data collection and compilation with parallel advances in data processing and analysis supporting a new insight into Antarctica's subglacial environment. Here, we summarize recent progress in understanding Antarctica's sedimentary basins. We review advances in the technical capability of radar, potential fields, seismic, and electromagnetic techniques to detect and characterize basins beneath ice and advances in integrated multi‐data interpretation including machine‐learning approaches. These new capabilities permit a continent‐wide mapping of Antarctica's sedimentary basins and their characteristics, aiding definition of the tectonic development of the continent. Crucially, Antarctica's sedimentary basins interact with the overlying ice sheet through dynamic feedbacks that have the potential to contribute to rapid ice‐sheet change. Looking ahead, future research directions include techniques to increase data coverage within logistical constraints, and resolving major knowledge gaps, including insufficient sampling of the ice‐sheet bed and poor definition of subglacial basin structure and stratigraphy. Translating the knowledge of sedimentary basin processes into ice‐sheet modeling studies is critical to underpin better capacity to predict future change.more » « less
An official website of the United States government

