In this paper, we introduce a novel multi-scale network model of two epidemics: HIV infection and opioid addiction. The HIV infection dynamics is modeled on a complex network. We determine the basic reproduction number of HIV infection, $$ \mathcal{R}_{v} $$, and the basic reproduction number of opioid addiction, $$ \mathcal{R}_{u} $$. We show that the model has a unique disease-free equilibrium which is locally asymptotically stable when both $$ \mathcal{R}_{u} $$ and $$ \mathcal{R}_{v} $$ are less than one. If $$ \mathcal{R}_{u} > 1 $$ or $$ \mathcal{R}_{v} > 1 $$, then the disease-free equilibrium is unstable and there exists a unique semi-trivial equilibrium corresponding to each disease. The unique opioid only equilibrium exist when the basic reproduction number of opioid addiction is greater than one and it is locally asymptotically stable when the invasion number of HIV infection, $$ \mathcal{R}^{1}_{v_i} $$ is less than one. Similarly, the unique HIV only equilibrium exist when the basic reproduction number of HIV is greater than one and it is locally asymptotically stable when the invasion number of opioid addiction, $$ \mathcal{R}^{2}_{u_i} $$ is less than one. Existence and stability of co-existence equilibria remains an open problem. We performed numerical simulations to better understand the impact of three epidemiologically important parameters that are at the intersection of two epidemics: $$ q_v $$ the likelihood of an opioid user being infected with HIV, $$ q_u $$ the likelihood of an HIV-infected individual becoming addicted to opioids, and $$ \delta $$ recovery from opioid addiction. Simulations suggest that as the recovery from opioid use increases, the prevalence of co-affected individuals, those who are addicted to opioids and are infected with HIV, increase significantly. We demonstrate that the dependence of the co-affected population on $$ q_u $$ and $$ q_v $$ are not monotone.
more »
« less
Immuno-epidemiological co-affection model of HIV infection and opioid addiction
In this paper, we present a multi-scale co-affection model of HIV infection and opioid addiction. The population scale epidemiological model is linked to the within-host model which describes the HIV and opioid dynamics in a co-affected individual. CD4 cells and viral load data obtained from morphine addicted SIV-infected monkeys are used to validate the within-host model. AIDS diagnoses, HIV death and opioid mortality data are used to fit the between-host model. When the rates of viral clearance and morphine uptake are fixed, the within-host model is structurally identifiable. If in addition the morphine saturation and clearance rates are also fixed the model becomes practical identifiable. Analytical results of the multi-scale model suggest that in addition to the disease-addiction-free equilibrium, there is a unique HIV-only and opioid-only equilibrium. Each of the boundary equilibria is stable if the invasion number of the other epidemic is below one. Elasticity analysis suggests that the most sensitive number is the invasion number of opioid epidemic with respect to the parameter of enhancement of HIV infection of opioid-affected individual. We conclude that the most effective control strategy is to prevent opioid addicted individuals from getting HIV, and to treat the opioid addiction directly and independently from HIV.
more »
« less
- Award ID(s):
- 1951595
- PAR ID:
- 10330617
- Date Published:
- Journal Name:
- Mathematical Biosciences and Engineering
- Volume:
- 19
- Issue:
- 4
- ISSN:
- 1551-0018
- Page Range / eLocation ID:
- 3636 to 3672
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this paper we develop a four compartment within-host model of nutrition and HIV. We show that the model has two equilibria: an infection-free equilibrium and infection equilibrium. The infection free equilibrium is locally asymptotically stable when the basic reproduction number $$ \mathcal{R}_0 < 1 $$, and unstable when $$ \mathcal{R}_0 > 1 $$. The infection equilibrium is locally asymptotically stable if $$ \mathcal{R}_0 > 1 $$ and an additional condition holds. We show that the within-host model of HIV and nutrition is structured to reveal its parameters from the observations of viral load, CD4 cell count and total protein data. We then estimate the model parameters for these 3 data sets. We have also studied the practical identifiability of the model parameters by performing Monte Carlo simulations, and found that the rate of clearance of the virus by immunoglobulins is practically unidentifiable, and that the rest of the model parameters are only weakly identifiable given the experimental data. Furthermore, we have studied how the data frequency impacts the practical identifiability of model parameters.more » « less
-
In this study, we apply optimal control theory to an immuno-epidemiological model of HIV and opioid epidemics. For the multi-scale model, we used four controls: treating the opioid use, reducing HIV risk behaviour among opioid users, entry inhibiting antiviral therapy, and antiviral therapy which blocks the viral production. Two population-level controls are combined with two within-host-level controls. We prove the existence and uniqueness of an optimal control quadruple. Comparing the two population-level controls, we find that reducing the HIV risk of opioid users has a stronger impact on the population who is both HIV-infected and opioid-dependent than treating the opioid disorder. The within-host-level antiviral treatment has an effect not only on the co-affected population but also on the HIV-only infected population. Our findings suggest that the most effective strategy for managing the HIV and opioid epidemics is combining all controls at both within-host and between-host scales.more » « less
-
This study examines the interactions between healthy target cells, infected target cells, virus particles, and immune cells within an HIV model. The model exhibits two equilibrium points: an infection-free equilibrium and an infection equilibrium. Stability analysis shows that the infection-free equilibrium is locally asymptotically stable when R0<1. Further, it is unstable when R0>1. The infection equilibrium is locally asymptotically stable when R0>1. The structural and practical identifiabilities of the within-host model for HIV infection dynamics were investigated using differential algebra techniques and Monte Carlo simulations. The HIV model was structurally identifiable by observing the total uninfected and infected target cells, immune cells, and viral load. Monte Carlo simulations assessed the practical identifiability of parameters. The production rate of target cells (λ), the death rate of healthy target cells (d), the death rate of infected target cells (δ), and the viral production rate by infected cells (π) were practically identifiable. The rate of infection of target cells by the virus (β), the death rate of infected cells by immune cells (Ψ), and antigen-driven proliferation rate of immune cells (b) were not practically identifiable. Practical identifiability was constrained by the noise and sparsity of the data. Analysis shows that increasing the frequency of data collection can significantly improve the identifiability of all parameters. This highlights the importance of optimal data sampling in HIV clinical studies, as it determines the best time points, frequency, and the number of sample points required to accurately capture the dynamics of the HIV infection within a host.more » « less
-
null (Ed.)Abstract In 2016, more than 11 million Americans abused prescription opioids. The National Institute on Drug Abuse considers the opioid crisis a national addiction epidemic, as an increasing number of people are affected each year. Using the framework developed in mathematical modelling of infectious diseases, we create and analyse a compartmental opioid-abuse model consisting of a system of ordinary differential equations. Since $$40\%$$ of opioid overdoses are caused by prescription opioids, our model includes prescription compartments for the four most commonly prescribed opioids, as well as for the susceptible, addicted and recovered populations. While existing research has focused on drug abuse models in general and opioid models with one prescription compartment, no previous work has been done comparing the roles that the most commonly prescribed opioids have had on the crisis. By combining data from the Substance Abuse and Mental Health Services Administration (which tracked the proportion of people who used or misused one of the four individual opioids) with data from the Centers of Disease Control and Prevention (which counted the total number of prescriptions), we estimate prescription rates and probabilities of addiction for the four most commonly prescribed opioids. Additionally, we perform a sensitivity analysis and reallocate prescriptions to determine which opioid has the largest impact on the epidemic. Our results indicate that oxycodone prescriptions are both the most likely to lead to addiction and have the largest impact on the size of the epidemic, while hydrocodone prescriptions had the smallest impact.more » « less
An official website of the United States government

