skip to main content


Title: Solvothermal Synthesis of [Cr 7 S 8 (en) 8 Cl 2 ]Cl 3  ⋅ 2H 2 O with Magnetically Frustrated [Cr 7 S 8 ] 5+ Double‐Cubes**
Abstract

A novel transition metal chalcohalide [Cr7S8(en)8Cl2]Cl3 ⋅ 2H2O, with [Cr7S8]5+dicubane cationic clusters, has been synthesized by a low temperature solvothermal method, using dimethyl sulfoxide (DMSO) and ethylenediamine (en) solvents. Ethylenediamine ligand exhibits bi‐ and monodentate coordination modes; in the latter case ethylenediamine coordinates to Cr atoms of adjacent clusters, giving rise to a 2D polymeric structure. Although magnetic susceptibility shows no magnetic ordering down to 1.8 K, a highly negative Weiss constant,θ=−224(2) K, obtained from Curie‐Weiss fit of inverse susceptibility, suggests strong antiferromagnetic (AFM) interactions betweenS=3/2 Cr(III) centers. Due to the complexity of the system with (2S+1)7=16384 microstates from seven Cr3+centers, a simplified model with only two exchange constants was used for simulations. Density‐functional theory (DFT) calculations yielded the two exchange constants to beJ1=−21.4 cm−1andJ2=−30.2 cm−1, confirming competing AFM coupling between the shared Cr3+center and the peripheral Cr3+ions of the dicubane cluster. The best simulation of the experimental data was obtained withJ1=−20.0 cm−1andJ2=−21.0 cm−1, in agreement with the slightly stronger AFM exchange within the triangles of the peripheral Cr3+ions as compared to the AFM exchange between the central and peripheral Cr3+ions. This compound is proposed as a synthon towards magnetically frustrated systems assembled by linking dicubane transition metal‐chalcogenide clusters into polymeric networks.

 
more » « less
Award ID(s):
2003783
NSF-PAR ID:
10446288
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Chemistry – A European Journal
Volume:
28
Issue:
5
ISSN:
0947-6539
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Organofunctionalized tetranuclear clusters [(MIICl)2(VIVO)2{((HOCH2CH2)(H)N(CH2CH2O))(HN(CH2CH2O)2)}2] (1, M=Co,2: M=Zn) containing an unprecedented oxometallacyclic {M2V2Cl2N4O8} (M=Co, Zn) framework have been prepared by solvothermal reactions. The new oxo‐alkoxide compounds were fully characterized by spectroscopic methods, magnetic susceptibility measurement, DFT and ab initio computational methods, and complete single‐crystal X‐ray diffraction structure analysis. The isostructural clusters are formed of edge‐sharing octahedral {VO5N} and trigonal bipyramidal {MO3NCl} units. Diethanolamine ligates the bimetallic lacunary double cubane core of1and2in an unusual two‐mode fashion, unobserved previously. In the crystalline state, the clusters of1and2are joined by hydrogen bonds to form a three‐dimensional network structure. Magnetic susceptibility data indicate weakly antiferromagnetic interactions between the vanadium centers [Jiso(VIV−VIV)=−5.4(1); −3.9(2) cm−1], and inequivalent antiferromagnetic interactions between the cobalt and vanadium centers [Jiso(VIV−CoII)=−12.6 and −7.5 cm−1] contained in1.

     
    more » « less
  2. Abstract

    Three new polynuclear clusters with the formulae [Mn10O4(OH)(OMe){(py)2C(O)2}2{(py)2C(OMe)(O)}4(MeCO2)6](ClO4)2(1), Na[Mn12O2(OH)3(OMe){(py)2C(O)2}6{(py)2C(OH)(O)}2(MeCO2)2(H2O)10](ClO4)8(2) and [Mn12O4(OH)2{(py)2C(O)2}6{(py)2C(OMe)(O)}(MeCO2)3(NO3)3(H2O)(DMF)2](NO3)2(3) were prepared from the combination of di‐2‐pyridyl ketone, (py)2CO, with the aliphatic diols (1,3‐propanediol (pdH2) or 1,4‐butanediol (1,4‐bdH2)) in Mn carboxylate chemistry. The reported compounds do not include the aliphatic diols employed in this reaction scheme; however, their use is essential for the formation of13. The crystal structures of13are based on multilayer cores which, to our knowledge, are reported for the first time in Mn cluster chemistry. Direct current (dc) magnetic susceptibility studies showed the presence of dominant antiferromagnetic exchange interactions within13. Alternating current (ac) magnetic susceptibility studies revealed the presence of out‐of‐phase signals below 3.0 K for2and3indicating the slow relaxation of the magnetization vector, characteristic of single‐molecule magnets; theUeffvalue of2was found to be 23 K and the preexponential factorτ0~7.6×10−9 s.

     
    more » « less
  3. The ion exchange and point defect models are two prominent models describing the role of anions, such as chlorides, in the degradation of passive oxide films. Here the thermodynamic feasibility of critical steps of Cl-induced degradation of a hydroxylated α-Cr2O3(0001) surface, as proposed by these two models, are studied. Both models begin with Cl substitution of surface OH and H2O, which becomes less favorable with increasing Cl coverage. The initial stages of Cl-induced breakdown of the α-Cr2O3depend on Cl coverage and the presence of O vacancy near the surface as follows: (1) neither Cl insertion (supporting the ion exchange model) nor Cr vacancy formation (supporting the point defect model) is feasible at low Cl coverages except in the presence of O vacancies near the surface, where Cl insertion is thermodynamically feasible even at low coverages, (2) in the absence of O vacancies, Cr vacancy formation becomes feasible from 10/12 ML onwards whereas Cl insertion by exchange with subsurface OH only becomes feasible at full coverage. This implies that at higher coverages Cl-induced degradation first initiatesthrough a vacancy formation mechanism, but both insertion and vacancy formation would be feasible at full coverage.

     
    more » « less
  4. Abstract

    All‐solid‐state rechargeable sodium (Na)‐ion batteries are promising for inexpensive and high‐energy‐density large‐scale energy storage. In this contribution, new Na solid electrolytes, Na3−yPS4−xClx, are synthesized with a strategic approach, which allows maximum substitution of Cl for S (x= 0.2) without significant compromise of structural integrity or Na deficiency. A maximum conductivity of 1.96 mS cm−1at 25 °C is achieved for Na3.0PS3.8Cl0.2, which is two orders of magnitude higher compared with that of tetragonal Na3PS4(t‐Na3PS4). The activation energy (Ea) is determined to be 0.19 eV. Ab initio molecular dynamics simulations shed light on the merit of maximizing Cl‐doping while maintaining low Na deficiency in enhanced Na‐ion conduction. Solid‐state nuclear magnetic resonance (NMR) characterizations confirm the successful substitution of Cl for S and the resulting change of P oxidation state from 5+ to 4+, which is also verified by spin moment analysis. Ion transport pathways are determined with a tracer‐exchange NMR method. The functional detects that promote Na ‐ion transport are maximized for further improvement in ionic conductivity. Full‐cell performance is demonstrated using Na/Na3.0PS3.8Cl0.2/Na3V2(PO4)3with a reversible capacity of ≈100 mAh g‐1at room temperature.

     
    more » « less
  5. Abstract

    A new nonheme iron(II) complex, FeII(Me3TACN)((OSiPh2)2O) (1), is reported. Reaction of1with NO(g)gives a stable mononitrosyl complex Fe(NO)(Me3TACN)((OSiPh2)2O) (2), which was characterized by Mössbauer (δ=0.52 mm s−1, |ΔEQ|=0.80 mm s−1), EPR (S=3/2), resonance Raman (RR) and Fe K‐edge X‐ray absorption spectroscopies. The data show that2is an {FeNO}7complex with anS=3/2 spin ground state. The RR spectrum (λexc=458 nm) of2combined with isotopic labeling (15N,18O) reveals ν(N‐O)=1680 cm−1, which is highly activated, and is a nearly identical match to that seen for the reactive mononitrosyl intermediate in the nonheme iron enzyme FDPnor (ν(NO)=1681 cm−1). Complex2reacts rapidly with H2O in THF to produce the N‐N coupled product N2O, providing the first example of a mononuclear nonheme iron complex that is capable of converting NO to N2O in the absence of an exogenous reductant.

     
    more » « less