skip to main content


Title: EasyBand2.0: A Framework with Context-Aware Recommendation Mechanism for Safety-Aware Mobility during Pandemic Outbreaks
Award ID(s):
1924112
NSF-PAR ID:
10330773
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the 23rd International Symposium on Quality Electronic Design (ISQED)
Page Range / eLocation ID:
187-193
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. 5G Millimeter Wave (mmWave) technology holds great promise for Connected Autonomous Vehicles (CAVs) due to its ability to achieve data rates in the Gbps range. However, mmWave suffers from a high beamforming overhead and requirement of line of sight (LOS) to maintain a strong connection. For Vehicle-to-Infrastructure (V2I) scenarios, where CAVs connect to roadside units (RSUs), these drawbacks become apparent. Because vehicles are dynamic, there is a large potential for link blockages. These blockages are detrimental to the connected applications running on the vehicle, such as cooperative perception and remote driver takeover. Existing RSU selection schemes base their decisions on signal strength and vehicle trajectory alone, which is not enough to prevent the blockage of links. Many modern CAVs motion planning algorithms routinely use other vehicle’s near-future path plans, either by explicit communication among vehicles, or by prediction. In this paper, we make use of the knowledge of other vehicle’s near future path plans to further improve the RSU association mechanism for CAVs. We solve the RSU association algorithm by converting it to a shortest path problem with the objective to maximize the total communication bandwidth. We evaluate our approach, titled B-AWARE, in simulation using Simulation of Urban Mobility (SUMO) and Digital twin for self-dRiving Intelligent VEhicles (DRIVE) on 12 highway and city street scenarios with varying traffic density and RSU placements. Simulations show B-AWARE results in a 1.05× improvement of the potential datarate in the average case and 1.28× in the best case vs. the state-of-the-art. But more impressively, B-AWARE reduces the time spent with no connection by 42% in the average case and 60% in the best case as compared to the state-of-the-art methods. This is a result of B-AWARE reducing nearly 100% of blockage occurrences.

     
    more » « less
  2. null (Ed.)
  3. As data privacy continues to be a crucial human-right concern as recognized by the UN, regulatory agencies have demanded developers obtain user permission before accessing user-sensitive data. Mainly through the use of privacy policies statements, developers fulfill their legal requirements to keep users abreast of the requests for their data. In addition, platforms such as Android enforces explicit permission request using the permission model. Nonetheless, recent research has shown that service providers hardly make full disclosure when requesting data in these statements. Neither is the current permission model designed to provide adequate informed consent. Often users have no clear understanding of the reason and scope of usage of the data request. This paper proposes an unambiguous, informed consent process that provides developers with a standardized method for declaring Intent. Our proposed Intent-aware permission architecture extends the current Android permission model with a precise mechanism for full disclosure of purpose and scope limitation. The design of which is based on an ontology study of data requests purposes. The overarching objective of this model is to ensure end-users are adequately informed before making decisions on their data. Additionally, this model has the potential to improve trust between end-users and developers. 
    more » « less