skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Interphase boundary, grain boundary, and surface diffusion in Al2O3-GdAlO3 composites determined from bicrystal coble creep experiments
Award ID(s):
1922867
PAR ID:
10330804
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Journal of the European Ceramic Society
Volume:
42
Issue:
9
ISSN:
0955-2219
Page Range / eLocation ID:
3976 to 3985
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Grain boundaries can greatly affect the transport properties of polycrystalline materials, particularly when the grain size approaches the nanoscale. While grain boundaries often enhance diffusion by providing a fast pathway for chemical transport, some material systems, such as those of solid oxide fuel cells and battery cathode particles, exhibit the opposite behavior, where grain boundaries act to hinder diffusion. To facilitate the study of systems with hindered grain boundary diffusion, we propose a model that utilizes the smoothed boundary method to simulate the dynamic concentration evolution in polycrystalline systems. The model employs domain parameters with diffuse interfaces to describe the grains, thereby enabling solutions with explicit consideration of their complex geometries. The intrinsic error arising from the diffuse interface approach employed in our proposed model is explored by comparing the results against a sharp interface model for a variety of parameter sets. Finally, two case studies are considered to demonstrate potential applications of the model. First, a nanocrystalline yttria-stabilized zirconia solid oxide fuel cell system is investigated, and the effective diffusivities are extracted from the simulation results and are compared to the values obtained through mean-field approximations. Second, the concentration evolution during lithiation of a polycrystalline battery cathode particle is simulated to demonstrate the method’s capability. 
    more » « less
  2. Interactions between an evolving solid and inviscid flow can result in substantial computational complexity, particularly in circumstances involving varied boundary conditions between the solid and fluid phases. Examples of such interactions include melting, sublimation, and deflagration, all of which exhibit bidirectional coupling, mass/heat transfer, and topological change of the solid–fluid interface. The diffuse interface method is a powerful technique that has been used to describe a wide range of solid-phase interface-driven phenomena. The implicit treatment of the interface eliminates the need for cumbersome interface tracking, and advances in adaptive mesh refinement have provided a way to sufficiently resolve diffuse interfaces without excessive computational cost. However, the general scale-invariant coupling of these techniques to flow solvers has been relatively unexplored. In this work, a robust method is presented for treating diffuse solid–fluid interfaces with arbitrary boundary conditions. Source terms defined over the diffuse region mimic boundary conditions at the solid–fluid interface, and it is demonstrated that the diffuse length scale has no adverse effects. To show the efficacy of the method, a one-dimensional implementation is introduced and tested for three types of boundaries: mass flux through the boundary, a moving boundary, and passive interaction of the boundary with an incident acoustic wave. Two-dimensional results are presented as well these demonstrate expected behavior in all cases. Convergence analysis is also performed and compared against the sharp-interface solution, and linear convergence is observed. This method lays the groundwork for the extension to viscous flow and the solution of problems involving time-varying mass-flux boundaries. 
    more » « less
  3. In the limit of a large yield stress, or equivalently at the initiation of motion, viscoplastic flows can develop narrow boundary layers that provide either surfaces of failure between rigid plugs, the lubrication between a plugged flow and a wall or buffers for regions of predominantly plastic deformation. Oldroyd ( Proc. Camb. Phil. Soc. , vol. 43, 1947, pp. 383–395) presented the first theoretical discussion of these viscoplastic boundary layers, offering an asymptotic reduction of the governing equations and a discussion of some model flow problems. However, the complicated nonlinear form of Oldroyd’s boundary-layer equations has evidently precluded further discussion of them. In the current paper, we revisit Oldroyd’s viscoplastic boundary-layer analysis and his canonical examples of a jet-like intrusion and flow past a thin plate. We also consider flow down channels with either sudden expansions or wavy walls. In all these examples, we verify that viscoplastic boundary layers form as envisioned by Oldroyd. For each example, we extract the dependence of the boundary-layer thickness and flow profiles on the dimensionless yield-stress parameter (Bingham number). We find that, while Oldroyd’s boundary-layer theory applies to free viscoplastic shear layers, it does not apply when the boundary layer is adjacent to a wall, as has been observed previously for two-dimensional flow around circular obstructions. Instead, the boundary-layer thickness scales in a different fashion with the Bingham number, as suggested by classical solutions for plane-parallel flows, lubrication theory and, for flow around a plate, by Piau ( J. Non-Newtonian Fluid Mech. , vol. 102, 2002, pp. 193–218); we rationalize this second scaling and provide an alternative boundary-layer theory. 
    more » « less