skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Reactive force fields for aqueous and interfacial magnesium carbonate formation
We develop Mg/C/O/H ReaxFF parameter sets for two environments: an aqueous force field for magnesium ions in solution and an interfacial force field for minerals and mineral–water interfaces. Since magnesium is highly ionic, we choose to fix the magnesium charge and model its interaction with C/O/H through Coulomb, Lennard-Jones, and Buckingham potentials. We parameterize the forcefields against several crystal structures, including brucite, magnesite, magnesia, magnesium hydride, and magnesium carbide, as well as Mg 2+ water binding energies for the aqueous forcefield. Then, we test the forcefield for other magnesium-containing crystals, solvent separated and contact ion-pairs and single-molecule/multilayer water adsorption energies on mineral surfaces. We also apply the forcefield to the forsterite–water and brucite–water interface that contains a bicarbonate ion. We observe that a long-range proton transfer mechanism deprotonates the bicarbonate ion to carbonate at the interface. Free energy calculations show that carbonate can attach to the magnesium surface with an energy barrier of about 0.22 eV, consistent with the free energy required for aqueous Mg–CO 3 ion pairing. Also, the diffusion constant of the hydroxide ions in the water layers formed on the forsterite surface are shown to be anisotropic and heterogeneous. These findings can help explain the experimentally observed fast nucleation and growth of magnesite at low temperature at the mineral–water–CO 2 interface in water-poor conditions.  more » « less
Award ID(s):
2103125
PAR ID:
10330815
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Volume:
23
Issue:
40
ISSN:
1463-9076
Page Range / eLocation ID:
23106 to 23123
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Phosphate in wastewater can be recovered in the form of struvite crystals for use as slow-release fertilizer. Currently, struvite recovery often requires supplementing magnesium ions and raising pH with chemicals, making the recovered struvite unfavorable for organic production. In an effort for cleaner production, this study developed a versatile approach employing two mineral products in variable combinations for optimal supplementation of magnesium and elevation of pH. Magnesite, a mineral of MgCO3, was ground and calcined without use of any catalysts. The magnesite calcined under the optimum conditions (800 ◦C for 30 min) can be dissolved in near-neutral filtrate of sludge digestate to supplement magnesium and raise pH for effective struvite formation. The OMRI-listed Epsom salts (MgSO4•7H2O), mineral-based water-soluble commercial products, can be used to supplement magnesium without changing pH of alkaline wastewater. Six-hour batch operation of an airlift crystallizer removed 85.7% and 94.7% of phosphate in hydrolyzed human urine when magnesium was amended to 1.2 × molar concentration of phosphate with calcined magnesite and an OMRI-listed Epsom salt, respectively. More than 98% of phosphate was removed from filtrate of sludge digestate in 3-h batch operation using calcined magnesite to raise pH to 8.5 and the Epsom salt for further magnesium supplementation. Struvite accounted for 85.7%, 90.5%, and 81.5% of the crystals recovered from urine with calcined magnesite, urine with Epsom salt, and filtrate with both mineral products, respectively. The material and energy costs of this green process were estimated to be $0.16/kg struvite from urine with calcined magnesite, $1.37/kg struvite from urine with Epsom salt, and $0.94/kg struvite from filtrate with both mineral products. This study proved the technical and economic feasibility of chemical-free magnesium supplementation and pH elevation, making the recovered struvite potentially certifiable for organic production. 
    more » « less
  2. Information resulting from a comprehensive investigation into the intrinsic strengths of hydrated divalent magnesium clusters is useful for elucidating the role of aqueous solvents on the Mg2+ ion, which can be related to those in bulk aqueous solution. However, the intrinsic Mg–O and intermolecular hydrogen bond interactions of hydrated magnesium ion clusters have yet to be quantitatively measured. In this work, we investigated a set of 17 hydrated divalent magnesium clusters by means of local vibrational mode force constants calculated at the ωB97X-D/6-311++G(d,p) level of theory, where the nature of the ion–solvent and solvent–solvent interactions were interpreted from topological electron density analysis and natural population analysis. We found the intrinsic strength of inner shell Mg–O interactions for [Mg(H2O)n]2+ (n = 1–6) clusters to relate to the electron density at the bond critical point in Mg–O bonds. From the application of a secondary hydration shell to [Mg(H2O)n]2+ (n = 5–6) clusters, stronger Mg–O interactions were observed to correspond to larger instances of charge transfer between the lp(O) orbitals of the inner hydration shell and the unfilled valence shell of Mg. As the charge transfer between water molecules of the first and second solvent shell increased, so did the strength of their intermolecular hydrogen bonds (HBs). Cumulative local vibrational mode force constants of explicitly solvated Mg2+, having an outer hydration shell, reveal a CN of 5, rather than a CN of 6, to yield slightly more stable configurations in some instances. However, the cumulative local mode stretching force constants of implicitly solvated Mg2+ show the six-coordinated cluster to be the most stable. These results show that such intrinsic bond strength measures for Mg–O and HBs offer an effective way for determining the coordination number of hydrated magnesium ion clusters. 
    more » « less
  3. null (Ed.)
    Simultaneous major nutrient nitrogen (N) and phosphorus (P) recovery from wastewater is key to achieving food–energy–water sustainable development. In this work, we elucidate the reaction kinetics, crystalline structure and chemical composition of the resulting solid precipitate obtained from simulated N and P containing wastewater solution using widely abundant low solubility magnesite (MgCO 3 ) particles in the presence of common transition metal ions, such as zinc (Zn 2+ ) or copper (Cu 2+ ). We show that up to 100 ppm Zn 2+ from the simulated wastewater can be incorporated into the struvite lattice as isolated distorted Zn 2+ while even at very low concentrations of ∼5 ppm Cu 2+ ions almost completely inhibit struvite crystal formation. The resulting solid precipitate distinctly affects soil microbial biomass carbon and soil dehydrogenase enzyme activity. These results show a cautionary case where abundant natural mineral MgCO 3 exhibits very different chemistry in Cu 2+ containing simulated wastewater and does not readily adsorb or retain NH 4 + and PO 4 3− ions, unlike less sustainable but more water-soluble magnesium sources, such as MgCl 2 , at the equivalent [Mg 2+ ] : [NH 4 + ] : [PO 4 3− ] molar ratio of 1.4 : 1 : 1. 
    more » « less
  4. Abstract Carbon mineralization in humidified carbon dioxide offers a promising route to mitigate anthropogenic emissions in a world stressed by water security. Despite its technological importance, our understanding of carbonation in water-poor environments lags, as traditional dissolution-precipitation pathways struggle to explain the adsorbed water nanofilm-mediated reactivity. Here, we utilizein operandoX-ray diffraction (XRD) and advanced molecular simulations to investigate nanoconfined reactions driving forsterite carbonation, the magnesium-rich olivine. By examining magnesium ion dissolution and transport in atomistic simulations of the forsterite-water-carbon dioxide interface and comparing these with thein operandoXRD activation energies, we identify both processes as rate-limiting at saturation. Our simulations reveal a mechanistic view of interfacial carbonation, where dissolution and precipitation are mediated by anomalous quasi two-dimensional diffusion. The transport process involves intermittent diffusive hopping in the desorbed state, separated by crawling events that are spatially short but temporally long. This understanding transcends carbon mineralization, with implications for understanding the transport of contaminants in geosystems, the design of multifunctional materials, water desalination, and molecular recognition systems. 
    more » « less
  5. The experimental sequential bond energies for loss of water from Co 2+ (H 2 O) x complexes, x = 5–11, are determined by threshold collision-induced dissociation (TCID) using a guided ion beam tandem mass spectrometer with a thermal electrospray ionization source. Kinetic energy dependent TCID cross sections are analyzed to yield 0 K thresholds for sequential loss of neutral water molecules. The thresholds are converted from 0 to 298 K values to give hydration enthalpies and free energies. Theoretical geometry optimizations and single point energy calculations at several levels of theory are performed for the reactant and product ion complexes. Theoretical bond energies for ground structures are used for direct comparison with experimental values to obtain structural information on these complexes. In addition, the dissociative charge separation process, Co 2+ (H 2 O) x → CoOH + (H 2 O) m + H + (H 2 O) x−m−1 , is observed at x = 4, 6, and 7 in competition with primary water loss products. Energies for the charge separation rate-limiting transition states are calculated and compared to experimental threshold measurements. Results suggest that the critical size for which charge separation is energetically favored over water loss is x crit = 6, in contrast to lower values in previous literature reports. 
    more » « less