- Editors:
- Sandri-Goldin, Rozanne M.
- Award ID(s):
- 2013653
- Publication Date:
- NSF-PAR ID:
- 10331167
- Journal Name:
- Journal of Virology
- Volume:
- 95
- Issue:
- 18
- ISSN:
- 0022-538X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Parrish, Colin R. (Ed.)ABSTRACT øX174, G4, and α3 represent the three sister genera of a Microviridae subfamily. α3-like genomes are considerably larger than their sister genera genomes, yet they are packaged into capsids of similar internal volumes. They also contain multiple A* genes, which are nested within the larger A gene reading frame. Although unessential under most conditions, A* proteins mediate the fidelity of packaging reactions. Larger genomes and multiple A* genes may indicate that genome packaging is more problematic for α3-like viruses, especially at lower temperatures, where DNA persistence lengths would be longer. Unlike members of the other genera, which reliably form plaques at 20°C, α3-like phages are naturally cold sensitive below 28°C. To determine whether there was a connection between the uniquely α3-like genome characteristics and the cold-sensitive phenotype, the α3 assembly pathway was characterized at low temperature. Although virions were not detected, particles consistent with off-pathway packaging complexes were observed. In a complementary evolutionary approach, α3 was experimentally evolved to grow at progressively lower temperatures. The two major responses to cold adaptation were genome reduction and elevated A* gene expression. IMPORTANCE The production of enzymes, transcription factors, and viral receptors directly influences the niches viruses can inhabit. Some prokaryotic hostsmore »
-
We report the asymmetric reconstruction of the single-stranded RNA (ssRNA) content in one of the three otherwise identical virions of a multipartite RNA virus, brome mosaic virus (BMV). We exploit a sample consisting exclusively of particles with the same RNA content—specifically, RNAs 3 and 4—assembled in planta by agrobacterium-mediated transient expression. We find that the interior of the particle is nearly empty, with most of the RNA genome situated at the capsid shell. However, this density is disordered in the sense that the RNA is not associated with any particular structure but rather, with an ensemble of secondary/tertiary structures that interact with the capsid protein. Our results illustrate a fundamental difference between the ssRNA organization in the multipartite BMV viral capsid and the monopartite bacteriophages MS2 and Qβ for which a dominant RNA conformation is found inside the assembled viral capsids, with RNA density conserved even at the center of the particle. This can be understood in the context of the differing demands on their respective lifecycles: BMV must package separately each of several different RNA molecules and has been shown to replicate and package them in isolated, membrane-bound, cytoplasmic complexes, whereas the bacteriophages exploit sequence-specific “packaging signals” throughout themore »
-
ABSTRACT Human polyomaviruses are emerging pathogens that infect a large percentage of the human population and are excreted in urine. Consequently, urine that is collected for fertilizer production often has high concentrations of polyomavirus genes. We studied the fate of infectious double-stranded DNA (dsDNA) BK human polyomavirus (BKPyV) in hydrolyzed source-separated urine with infectivity assays and quantitative PCR (qPCR). Although BKPyV genomes persisted in the hydrolyzed urine for long periods of time ( T 90 [time required for 90% reduction in infectivity or gene copies] of >3 weeks), the viruses were rapidly inactivated ( T 90 of 1.1 to 11 h) in most of the tested urine samples. Interestingly, the infectivity of dsDNA bacteriophage surrogate T3 ( T 90 of 24 to 46 days) was much more persistent than that of BKPyV, highlighting a major shortcoming of using bacteriophages as human virus surrogates. Pasteurization and filtration experiments suggest that BKPyV virus inactivation was due to microorganism activity in the source-separated urine, and SDS-PAGE Western blots showed that BKPyV protein capsid disassembly is concurrent with inactivation. Our results imply that stored urine does not pose a substantial risk of BKPyV transmission, that qPCR and infectivity of the dsDNA surrogate do notmore »
-
Molecular motors that translocate DNA are ubiquitous in nature. During morphogenesis of double-stranded DNA bacteriophages, a molecular motor drives the viral genome inside a protein capsid. Several models have been proposed for the three-dimensional geometry of the packaged genome, but very little is known of the signature of the molecular packaging motor. For instance, biophysical experiments show that in some systems, DNA rotates during the packaging reaction, but most current biophysical models fail to incorporate this property. Furthermore, studies including rotation mechanisms have reached contra- dictory conclusions. In this study, we compare the geometrical signatures imposed by different possible mechanisms for the packaging motors: rotation, revolution, and rotation with revolution. We used a previously proposed kinetic Monte Carlo model of the motor, combined with Brownian dynamics simulations of DNA to simulate deterministic and stochastic motor models. We find that rotation is necessary for the accumulation of DNA writhe and for the chiral organization of the genome. We observe that although in the initial steps of the packaging reaction, the torsional strain of the genome is released by rotation of the molecule, in the later stages, it is released by the accumulation of writhe. We suggest that the molecular motor playsmore »
-
ABSTRACT Alphaherpesviruses such as herpes simplex virus and pseudorabies virus (PRV) are neuroinvasive double-stranded DNA (dsDNA) viruses that establish lifelong latency in peripheral nervous system (PNS) neurons of their native hosts. Following reactivation, infection can spread back to the initial mucosal site of infection or, in rare cases, to the central nervous system, with usually serious outcomes. During entry and egress, viral capsids depend on microtubule-based molecular motors for efficient and fast transport. In axons of PNS neurons, cytoplasmic dynein provides force for retrograde movements toward the soma, and kinesins move cargo in the opposite, anterograde direction. The dynamic properties of virus particles in cells can be imaged by fluorescent protein fusions to the small capsid protein VP26, which are incorporated into capsids. However, single-color fluorescent protein tags fail to distinguish the virus inoculum from progeny. Therefore, we established a dual-color system by growing a recombinant PRV expressing a red fluorescent VP26 fusion (PRV180) on a stable cell line expressing a green VP26 fusion (PK15-mNG-VP26). The resulting dual-color virus preparation (PRV180G) contains capsids tagged with both red and green fluorescent proteins, and 97% of particles contain detectable levels of mNeonGreen (mNG)-tagged VP26. After replication in neuronal cells, all PRV180G progenymore »