Abstract We find ourselves at a time when the need for transformation in science education is aligning with opportunity. Significant science education resources, namely the Next Generation Science Standards (NGSS) and the Ambitious Science Teaching (AST) framework, need an intentional aim of centering social justice for minoritized communities and youth as well as practices to enact it. While NGSS and AST provide concrete guidelines to support deep learning, revisions are needed to explicitly promote social justice. In this study, we sought to understand how a commitment to social justice, operationalized through culturally sustaining pedagogy (Paris, Culturally sustaining pedagogies and our futures.The Educational Forum, 2021; 85, pp. 364–376), might shape the AST framework to promote more critical versions of teaching science for equity. Through a qualitative multi‐case study, we observed three preservice teacher teams engaged in planning, teaching, and debriefing a 6‐day summer camp in a rural community. Findings showed that teachers shaped the AST sets of practices in ways that sustained local culture and addressed equity aims: anchoring scientific study in phenomena important to community stakeholders; using legitimizing students' stories by both using them to plan the following lessons and as data for scientific argumentation; introducing local community members as scientific experts, ultimately supporting a new sense of pride and advocacy for their community; and supporting students in publicly communicating their developing scientific expertise to community stakeholders. In shaping the AST framework through culturally sustaining pedagogy, teachers made notable investments: developing local networks; learning about local geography, history, and culture; building relationships with students; adapting lessons to incorporate students' ideas; connecting with community stakeholders to build scientific collaborations; and preparing to share their work publicly with the community. Using these findings, we offer a justice‐centered ambitious science teaching (JuST) framework that can deliver the benefits of a framework of practices while also engaging in the necessarily more critical elements of equity work. 
                        more » 
                        « less   
                    
                            
                            Utilizing theory to elucidate the work of creating equity for transformation within the science classroom
                        
                    
    
            In this paper, we outline how science teachers might engage in the work of creating educational equity. While acknowledging the historical inherent inequities associated with issues of access, opportunities to engage in science learning for individuals of marginalized identities (e.g., BIPOC individuals and women), and achievement, we broaden this definition to include social justice as a framework by which we can develop opportunities for the fostering of students' affinity identities with science. To this end, we draw on theorizations of equity within educational research, specifically discussed as excellence, equality, fairness, a zero-sum game, and most recently, social justice. Additionally, we utilize McKinney de Royston and Nasir's (2017) Racialized Learning Ecologies framework. This framework provides a useful lens to notice the layers of (in)equity within education. We then extend this ecological model into science education and present three lenses (i.e., layers) through which equity operates within science teaching and learning. We conclude with a discussion of the practical implications of doing the work of equity, that is, recognizing, interpreting, and redressing inequity in science classrooms. Ultimately, we provide an actionable definition of equity that has the potential to facilitate transformative and socially just science teaching and learning. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2029956
- PAR ID:
- 10331181
- Date Published:
- Journal Name:
- Science Education
- Volume:
- 106
- Issue:
- 5
- ISSN:
- 0036-8326
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            For some time, scholars who are guided by critical theories and perspectives have called out how white supremacist ideologies and systemic racism work to (re)produce societal inequities and educational injustices across science learning contexts in the United States. Given the sociopolitical nature of society, schooling, and science education, it is important to address the racist and settled history of scientific disciplines and science education. To this end, we take an antiracist stance on science teaching and learning and seek to disrupt forms of systemic racism in science classrooms. Since teachers do much of the daily work of transforming science education for minoritized learners, we advocate for preparing teachers who understand what it means to engage in antiracist, justice-oriented science teaching. In this article, we share our framework for supporting preservice teachers in understanding, developing, and implementing antiracist teaching dispositions and instructional practices. In alignment with other researchers in teacher education who emphasize the importance of anchoring teacher education practice and research in prominent educational theory, we highlight the theories undergirding our approach to antiracist science teaching. We offer considerations for how researchers and science teacher educators can use this framework to transform science teacher education.more » « less
- 
            Barnard, Daron (Ed.)Open educational resources, or OER, are teaching materials that reside in the public domain and are available under an open license. While the creation of high-quality materials and cyberinfrastructure to share these resources is important, OER are much more than static resource repositories. Vibrant OER communities function as collaboration hubs and often include librarians, instructional technologists, instructors, education researchers, funders, open-source software developers, and college administrators. Together, these individuals work as a community to respond to changes in the education landscape, support student learning impacts both in terms of cost savings and student retention, and solve issues related to broadly sharing open resources on the web. This essay provides general information about OER, describes communities developing OER for science, technology, engineering, and mathematics education, and presents insights about sustainability challenges. The sustainability challenges are organized according to multiple dimensions: cultural and social, economic and financial, and technological and environmental. In addition, OER provide important opportunities to address and promote social justice and open and accessible education philosophies. Knowing more about the OER landscape, sustainability challenges, and educational justice opportunities can help instructors use and contribute to this growing movement to reshape the landscape of undergraduate education.more » « less
- 
            Abstract Socioscientific issues (SSI) are problems involving the deliberate use of scientific topics that require students to engage in dialogue, discussion, and debate. The purpose of this project is to utilize issues that are personally meaningful and engaging to students, require the use of evidence-based reasoning, and provide a context for scientific information. Social justice is the pursuit of equity and fairness in society by ensuring that all individuals have opportunities to challenge and address inequalities and injustices to create a more just and equitable society for all (Killen et al. Human Development 65:257–269, 2021). By connecting science, technology, engineering, and mathematics (STEM) concepts to personally meaningful contexts, SSI can empower students to consider how STEM-based issues reflect moral principles and elements of virtue in their own lives and the world around them (Zeidler et al. Science Education 89:357–377, 2005). We employed a qualitative research design to answer the following questions: (1) In what ways, if any, did teachers help students grow their knowledge and practices on social justice through socioscientific issues? (2) In teachers’ perceptions, what components of SSI did students learn and what are their challenges? (3) In teachers’ perceptions, what are students’ stances on social justice? After completing the first year and second-year professional development programs, grades 6–12 STEM teachers were asked to complete a reflection on classroom artifacts. Teachers were asked to select student artifacts (e.g. assignments, projects, essays, videos, etc.) that they thought exemplified the students’ learning of SSI and stance on social justice. Based on 21 teacher-submitted examples of exemplar student work, we saw the following example pedagogies to engage their students on social justice: (a) making connections to real-world experiences, (b) developing a community project, (c) examining social injustice, and (d) developing an agency to influence/make changes. According to teachers, the most challenging SSI for students was elucidating their own position/solution, closely followed by employing reflective scientific skepticism. Moreover, the students exemplified reflexivity, metacognition, authentic activity, and dialogic conversation. Using SSI in classrooms allows students to tackle real-world problems, blending science and societal concerns. This approach boosts understanding of scientific concepts and their relevance to society. Identifying methods like real-world connections and examining social injustice helps integrate social justice themes into science education through SSI. Overall, SSI promotes interdisciplinary learning, critical thinking, and informed decision-making, enriching science education socially. This study highlights the value of integrating SSI in science education to engage students with social justice.more » « less
- 
            Frank, B.; Jones, D.; Ryan, Q. (Ed.)In this study, we showcase the various ways high school physics teachers make connections between science content and social justice, pushing the boundary of what is counted as science content by bringing social justice engagement to the center of science learning. We analyze lessons submitted by eighteen high school physics teachers who participated in a professional development program that supported the integration of equity into their science teaching. Three themes represent teachers' approach toward integrating social justice in their science lessons: (1) investigating the nature of science in specific science concepts and re-evaluating/redefining science concepts, (2) connecting students' everyday activities with science and global social justice issues, and (3) using science knowledge to engage with and advocate for social justice issues in students' local communities.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    