skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: PReVer: Towards Private Regulated Verified Data
Data privacy has garnered significant attention recently due to diverse applications that store sensitive data in untrusted infrastructure. From a data management point of view, the focus has been on the privacy of stored data and the privacy of querying data at a large scale. However, databases are not solely query engines on static data, they must support updates on dynamically evolving datasets. In this paper, we lay out a vision for privacy-preserving dynamic data. In particular, we focus on dynamic data that might be stored remotely on untrusted providers. Updates arrive at a provider and are verified and incorporated into the database based on predefined constraints. Depending on the application, the content of the stored data, the content of the updates and the constraints may be private or public. We then propose PReVer, a universal framework for managing regulated dynamic data in a privacy-preserving manner. We explore a set of research challenges that PReVer needs to address in order to guarantee the privacy of data, updates, and/or constraints and address the consistent and verifiable execution of updates. This opens the space of privacy-preserving data management from the narrow perspective of private queries on static datasets to the larger space of private management of dynamic data.  more » « less
Award ID(s):
1703560
PAR ID:
10331213
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the 25th International Conference on Extending Database Technology, (EDBT'2022)
Page Range / eLocation ID:
454-461
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Database driven dynamic spectrum sharing is one of the most promising dynamic spectrum access (DSA) solution to address the spectrum scarcity issue. In such a database driven DSA system, the centralized spectrum management infrastructure, called spectrum access system (SAS), makes its spectrum allocation decisions to secondary users (SUs) according to sensitive operational data of incumbent users (IUs). Since both SAS and SUs are not necessarily fully trusted, privacy protection against untrusted SAS and SUs become critical for IUs that have high operational privacy requirements. To address this problem, many IU privacy preserving solutions emerge recently. However, there is a lack of understanding and comparison of capability in protecting IU operational privacy under these existing approaches. In this paper, thus, we fill in the void by providing a comparative study that investigates existing solutions and explores several existing metrics to evaluate the strength of privacy protection. Moreover, we propose two general metrics to evaluate privacy preserving level and evaluate existing works with them. 
    more » « less
  2. Deep learning has shown incredible potential across a wide array of tasks, and accompanied by this growth has been an insatiable appetite for data. However, a large amount of data needed for enabling deep learning is stored on personal devices, and recent concerns on privacy have further highlighted challenges for accessing such data. As a result, federated learning (FL) has emerged as an important privacy-preserving technology that enables collaborative training of machine learning models without the need to send the raw, potentially sensitive, data to a central server. However, the fundamental premise that sending model updates to a server is privacy-preserving only holds if the updates cannot be “reverse engineered” to infer information about the private training data. It has been shown under a wide variety of settings that this privacy premise doesnothold. In this article we provide a comprehensive literature review of the different privacy attacks and defense methods in FL. We identify the current limitations of these attacks and highlight the settings in which the privacy of an FL client can be broken. We further dissect some of the successful industry applications of FL and draw lessons for future successful adoption. We survey the emerging landscape of privacy regulation for FL and conclude with future directions for taking FL toward the cherished goal of generating accurate models while preserving the privacy of the data from its participants. 
    more » « less
  3. In this paper, we consider privacy-preserving update strategies for secure outsourced growing databases. Such databases allow appendonly data updates on the outsourced data structure while analysis is ongoing. Despite a plethora of solutions to securely outsource database computation, existing techniques do not consider the information that can be leaked via update patterns. To address this problem, we design a novel secure outsourced database framework for growing data, DP-Sync, which interoperate with a large class of existing encrypted databases and supports efficient updates while providing differentially-private guarantees for any single update. We demonstrate DP-Sync's practical feasibility in terms of performance and accuracy with extensive empirical evaluations on real world datasets. 
    more » « less
  4. Differential privacy has emerged as a leading theoretical framework for privacy-preserving data gathering and analysis. It allows meaningful statistics to be collected for a population without revealing ``too much'' information about any individual member of the population. For software profiling, this machinery allows profiling data from many users of a deployed software system to be collected and analyzed in a privacy-preserving manner. Such a solution is appealing to many stakeholders, including software users, software developers, infrastructure providers, and government agencies. We propose an approach for differentially-private collection of frequency vectors from software executions. Frequency information is reported with the addition of random noise drawn from the Laplace distribution. A key observation behind the design of our scheme is that event frequencies are closely correlated due to the static code structure. Differential privacy protections must account for such relationships; otherwise, a seemingly-strong privacy guarantee is actually weaker than it appears. Motivated by this observation, we propose a novel and general differentially-private profiling scheme when correlations between frequencies can be expressed through linear inequalities. Using a linear programming formulation, we show how to determine the magnitude of random noise that should be added to achieve meaningful privacy protections under such linear constraints. Next, we develop an efficient instance of this general machinery for an important subclass of constraints. Instead of LP, our solution uses a reachability analysis of a constraint graph. As an exemplar, we employ this approach to implement differentially-private method frequency profiling for Android apps. Any differentially-private scheme has to balance two competing aspects: privacy and accuracy. Through an experimental study to characterize these trade-offs, we (1) show that our proposed randomization achieves much higher accuracy compared to related prior work, (2) demonstrate that high accuracy and high privacy protection can be achieved simultaneously, and (3) highlight the importance of linear constraints in the design of the randomization. These promising results provide evidence that our approach is a good candidate for privacy-preserving frequency profiling of deployed software. 
    more » « less
  5. This paper studies a distributed optimization problem in the federated learning (FL) framework under differential privacy constraints, whereby a set of clients having local samples are connected to an untrusted server, who wants to learn a global model while preserving the privacy of clients’ local datasets. We propose a new client sampling called self-sampling that reflects the random availability of clients in the learning process in FL. We analyze the differential privacy of the SGD with client self-sampling by composing amplification by sub-sampling along with amplification by shuffling. Furthermore, we analyze the convergence of the proposed SGD algorithm showing that we can get a reasonable learning performance while preserving the privacy of clients’ data even with client self-sampling. 
    more » « less