La 0.7 Sr 0.2 Ni 0.2 Fe 0.8 O 3 (LSNF), having thermochemical stability, superior ionic and electronic conductivity, and structural flexibility, was investigated as a cathode in SOECs. Exsolution of nanoparticles by reduction of LSNF at elevated temperatures can modulate the characteristics of adsorption, electron transfer, and oxidation states of catalytically active atoms, consequently improving the electrocatalytic activity. The exsolution of NiFe and La 2 NiO 4 nanoparticles to the surface of LSNF under reducing atmosphere (5% H 2 /N 2 ) was verified at various temperatures (500–800 °C) by IFFT from ETEM, TPR and in situ XRD. The exsolved nanoparticles obtained uniform size distribution (4.2–9.2 nm) and dispersion (1.31 to 0.61 × 10 4 particle per μm 2 ) depending on the reduction temperature (700–800 °C) and time (0–10 h). The reoxidation of the reduced LSNF (Red-LSNF) was verified by the XRD patterns, indicative of its redox ability, which allows for redistribution of the nanoparticles between the surface and the bulk. TPD-DRIFTS analysis demonstrated that Red-LSNF had superior H 2 O and CO 2 adsorption behavior as compared to unreduced LSNF, which we attributed to the abundance of oxygen vacancy sites and the exsolved NiFe and La 2 NiO 4 nanoparticles. After the reduction of LSNF, the decreases in the oxidation states of the catalytically active ions, Fe and Ni, were characterized on the surface by XPS as well as in the bulk by XANES. The electrochemical performance of the Red-LSNF cell was superior to that of the LSNF cell for electrolysis of H 2 O, CO 2 , and H 2 O/CO 2 .
more »
« less
Elucidating the Role of B-Site Cations toward CO 2 Reduction in Perovskite-Based Solid Oxide Electrolysis Cells
Solid oxide electrolysis cells (SOECs) are promising for the selective electrochemical conversion of CO 2 , or mixed streams of CO 2 and H 2 O, into high energy products such as CO and H 2 . However, these systems are limited by the poor redox stability of the state-of-the-art Ni-based cathode electrocatalysts. Due to their favorable redox properties, mixed ionic-electronic conducting (MIEC) oxides have been considered as promising alternatives. However, improvement of the electrochemical performance of MIEC-based SOEC electrocatalysts is needed and requires an understanding of the factors that govern their activity. Herein, we investigate the effect of B-site 3 d metal cations (Cr, Fe, Co, Ni) of LaBO 3 perovskites on their CO 2 electrochemical reduction activity in SOECs. We find that their electrochemical performance is highly dependent on the nature of the B-site cation and trends as LaFeO 3 > LaCoO 3 > LaNiO 3 > LaCrO 3 . Among these perovskites, LaNiO 3 is the least stable and decomposes under electrochemical conditions. In situ characterization and ab initio theoretical calculations suggest that both the nature of the B-site cation and the presence of oxygen surface vacancies impact the energetics of CO 2 adsorption and reduction. These studies provide fundamental insights critical toward devising ways to improve the performance of MIEC-based SOEC cathodes for CO 2 electroreduction.
more »
« less
- PAR ID:
- 10331281
- Date Published:
- Journal Name:
- Journal of The Electrochemical Society
- Volume:
- 169
- Issue:
- 3
- ISSN:
- 0013-4651
- Page Range / eLocation ID:
- 034532
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The significant role of perovskite defect chemistry through A-site doping of strontium titanate with lanthanum for CO 2 electrolysis properties is demonstrated. Here we present a dual strategy of A-site deficiency and promoting adsorption/activation by making use of redox active dopants such as Mn/Cr linked to oxygen vacancies to facilitate CO 2 reduction at perovskite titanate cathode surfaces. Solid oxide electrolysers based on oxygen-excess La 0.2 Sr 0.8 Ti 0.9 Mn(Cr) 0.1 O 3+δ , A-site deficient (La 0.2 Sr 0.8 ) 0.9 Ti 0.9 Mn(Cr) 0.1 O 3−δ and undoped La 0.2 Sr 0.8 Ti 1.0 O 3+δ cathodes are evaluated. In situ infrared spectroscopy reveals that the adsorbed and activated CO 2 adopts an intermediate chemical state between a carbon dioxide molecule and a carbonate ion. The double strategy leads to optimal performance being observed after 100 h of high-temperature operation and 3 redox cycles, suggesting a promising cathode material for CO 2 electrolysis.more » « less
-
Thin films of Ni 3 Al and Ni 3 Ga on carbon solid supports have been shown to generate multi-carbon products in electrochemical CO 2 reduction, an activity profile that, until recently, was ascribed exclusively to Cu-based catalysts. This catalytic behavior has introduced questions regarding the role of each metal, as well as other system components, during CO 2 reduction. Here, the significance of electrode structure and solid support choice in determining higher- versus lower-order reduction products is explored, and the commonly invoked Fischer–Tropsch-type mechanism of CO 2 reduction to multi-carbon products is indirectly probed. Electrochemical studies of both intermetallic and non-mixed Ni–Group 13 catalyst films suggest that intermetallic character is required to achieve C2 and C3 products irrespective of carbon support choice, negating the possibility of separate metal sites performing distinct yet complementary roles in CO 2 reduction. Furthermore, Ni 3 Al and Ni 3 Ga were shown to be incapable of generating higher-order reduction products in D 2 O, suggesting a departure from accepted mechanisms for CO 2 reduction on Cu. Additional routes to multi-carbon products may therefore be accessible when developing intermetallic catalysts for CO 2 electroreduction.more » « less
-
A facile and universal route for synthesizing transition metal borides has been developed by reaction of boron triiodide (BI 3 ) with elemental transition metals. This method employs relatively low synthesis temperatures to afford single-phase samples of various binary and ternary metal borides, such as Fe 2 B, Co 2 B, Ni 3 B, TiB 2 , VB 2 , CrB 2 , and Ni 2 CoB. This synthesis protocol can be utilized for the topotactic transformation of metal shapes into their respective borides, as exemplified by transformation of Ni foam to Ni 3 B foam. In situ powder X-ray diffraction studies of the Ni–BI 3 system showed that the crystalline nickel borides, Ni 4 B 3 and Ni 2 B, start to form at temperatures as low as 700 K and 877 K, respectively, which is significantly lower than the typical synthesis temperatures required to produce these borides. Ni 3 B synthesized by this method was tested as a supporting material for oxygen evolution reaction (OER) in acidic media. Composite electrocatalysts of IrO 2 /Ni 3 B with only 50% of IrO 2 exhibit current densities and stability similar to pure IrO 2 at mass loadings lower than 0.5 mg cm −2 , indicating Ni 3 B could be a promising supporting material for acidic OER.more » « less
-
Recent work has demonstrated a low-temperature route to fabricating mixed ionic/electronic conducting (MIEC) thin films with enhanced oxygen exchange kinetics by crystallizing amorphous-grown thin films under mild temperatures, eluding conditions for deleterious A-site cation surface segregation. Yet, the complex, multiscale chemical and structural changes during MIEC crystallization and their implications for the electrical properties remain relatively unexplored. In this work, micro-structural and atomic-scale structural and chemical changes in crystallizing SrTi 0.65 Fe 0.35 O 3− δ thin films on insulating (0001)-oriented Al 2 O 3 substrates are observed and correlated to changes in the in-plane electrical conductivity, measured in situ by ac impedance spectroscopy. Synchrotron X-ray absorption spectroscopy at the Fe and Ti K-edges gives direct evidence of oxidation occurring with the onset of crystallization and insight into the atomic-scale structural changes driven by the chemical changes. The observed oxidation, increase in B-site polyhedra symmetry, and alignment of neighboring B-site cation coordination units demonstrate increases in both hole concentration and mobility, thus underpinning the measured increase of in-plane conductivity by over two orders of magnitude during crystallization. High resolution transmission electron microscopy and spectroscopy of films at various degrees of crystallinity reveal compositional uniformity with extensive nano-porosity in the crystallized films, consistent with solid phase contraction expected from both oxidation and crystallization. We suggest that this chemo-mechanically driven dynamic nano-structuring is an additional contributor to the observed electrical behavior. By the point that the films become ∼60% crystalline (according to X-ray diffraction), the conductivity reaches the value of dense, fully crystalline films. Given the resulting high electronic conductivity, this low-temperature processing route leading to semi-crystalline hierarchical films exhibits promise for developing high performance MIECs for low-to-intermediate temperature applications.more » « less