Although integrins are known to be mechanosensitive and to possess many subtypes that have distinct physiological roles, single molecule studies of force exertion have thus far been limited to RGD-binding integrins. Here, we show that integrin α4β1 and RGD-binding integrins (αVβ1 and α5β1) require markedly different tension thresholds to support cell spreading. Furthermore, actin assembled downstream of α4β1 forms cross-linked networks in circularly spread cells, is in rapid retrograde flow, and exerts low forces from actin polymerization. In contrast, actin assembled downstream of αVβ1 forms stress fibers linking focal adhesions in elongated cells, is in slow retrograde flow, and matures to exert high forces (>54-pN) via myosin II. Conformational activation of both integrins occurs below 12-pN, suggesting that post-activation subtype-specific cytoskeletal remodeling imposes the higher threshold for spreading on RGD substrates. Multiple layers of single integrin mechanics for activation, mechanotransduction and cytoskeleton remodeling revealed here may underlie subtype-dependence of diverse processes such as somite formation and durotaxis.
- Award ID(s):
- 1905390
- NSF-PAR ID:
- 10331489
- Date Published:
- Journal Name:
- Frontiers in Physics
- Volume:
- 10
- ISSN:
- 2296-424X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Stiffness and forces are two fundamental quantities essential to living cells and tissues. However, it has been a challenge to quantify both 3D traction forces and stiffness (or modulus) using the same probe in vivo. Here, we describe an approach that overcomes this challenge by creating a magnetic microrobot probe with controllable functionality. Biocompatible ferromagnetic cobalt-platinum microcrosses were fabricated, and each microcross (about 30 micrometers) was trapped inside an arginine–glycine–aspartic acid–conjugated stiff poly(ethylene glycol) (PEG) round microgel (about 50 micrometers) using a microfluidic device. The stiff magnetic microrobot was seeded inside a cell colony and acted as a stiffness probe by rigidly rotating in response to an oscillatory magnetic field. Then, brief episodes of ultraviolet light exposure were applied to dynamically photodegrade and soften the fluorescent nanoparticle–embedded PEG microgel, whose deformation and 3D traction forces were quantified. Using the microrobot probe, we show that malignant tumor–repopulating cell colonies altered their modulus but not traction forces in response to different 3D substrate elasticities. Stiffness and 3D traction forces were measured, and both normal and shear traction force oscillations were observed in zebrafish embryos from blastula to gastrula. Mouse embryos generated larger tensile and compressive traction force oscillations than shear traction force oscillations during blastocyst. The microrobot probe with controllable functionality via magnetic fields could potentially be useful for studying the mechanoregulation of cells, tissues, and embryos.
-
Upon vascular injury, platelets form a hemostatic plug by binding to the subendothelium and to each other. Platelet-to-matrix binding is initially mediated by von Willebrand Factor (VWF) and platelet-to-platelet binding is mediated mainly by fibrinogen and VWF. After binding, the actin cytoskeleton of a platelet drives its contraction, generating traction forces that are important to the cessation of bleeding. Our understanding of the relationship between adhesive environment, F-actin morphology, and traction forces is limited. Here, we examined F-actin morphology of platelets attached to surfaces coated with fibrinogen and VWF. We identified distinct F-actin patterns induced by these protein coatings and found that these patterns were identifiable into three classifications via machine learning: solid, nodular, and hollow. We observed that traction forces for platelets were significantly higher on VWF than on fibrinogen coatings and these forces varied by F-actin pattern. Additionally, we analyzed the F-actin orientation in platelets and noted that their filaments were more circumferential when on fibrinogen coatings and having a hollow F-actin pattern, while they were more radial on VWF and having a solid F-actin pattern. Finally, we noted that subcellular localization of traction forces corresponded to protein coating and F-actin pattern: VWF-bound, solid platelets had higher forces at their central region while fibrinogen-bound, hollow platelets had higher forces at their periphery. These distinct F-actin patterns on fibrinogen and VWF and their differences in F-actin orientation, force magnitude, and force localization could have implications in hemostasis, thrombus architecture, and venous versus arterial thrombosis.more » « less
-
null (Ed.)Cells in vivo generate mechanical traction on the surrounding 3D extracellular matrix (ECM) and neighboring cells. Such traction and biochemical cues may remodel the matrix, e.g., increase stiffness, which, in turn, influences cell functions and forces. This dynamic reciprocity mediates development and tumorigenesis. Currently, there is no method available to directly quantify single-cell forces and matrix remodeling in 3D. Here, we introduce a method to fulfill this long-standing need. We developed a high-resolution microfabricated sensor that hosts a 3D cell-ECM tissue formed by self-assembly. This sensor measures cell forces and tissue stiffness and can apply mechanical stimulation to the tissue. We measured single and multicellular force dynamics of fibroblasts (3T3), human colon (FET) and lung (A549) cancer cells, and cancer-associated fibroblasts (CAF05) with 1-nN resolution. Single cells show notable force fluctuations in 3D. FET/CAF coculture system, mimicking cancer tumor microenvironment, increased tissue stiffness by three times within 24 hours.more » « less
-
The ability of eukaryotic cells to differentiate surface stiffness is fundamental for many processes like stem cell development. Bacteria were previously known to sense the presence of surfaces, but the extent to which they could differentiate stiffnesses remained unclear. Here we establish that the human pathogen Pseudomonas aeruginosa actively measures surface stiffness using type IV pili (TFP). Stiffness sensing is nonlinear, as induction of the virulence factor regulator is peaked with stiffness in a physiologically important range between 0.1 kPa (similar to mucus) and 1,000 kPa (similar to cartilage). Experiments on surfaces with distinct material properties establish that stiffness is the specific biophysical parameter important for this sensing. Traction force measurements reveal that the retraction of TFP is capable of deforming even stiff substrates. We show how slow diffusion of the pilin PilA in the inner membrane yields local concentration changes at the base of TFP during extension and retraction that change with substrate stiffness. We develop a quantitative biomechanical model that explains the transcriptional response to stiffness. A competition between PilA diffusion in the inner membrane and a loss/gain of monomers during TFP extension/retraction produces substrate stiffness-dependent dynamics of the local PilA concentration. We validated this model by manipulating the ATPase activity of the TFP motors to change TFP extension and retraction velocities and PilA concentration dynamics, altering the stiffness response in a predictable manner. Our results highlight stiffness sensing as a shared behavior across biological kingdoms, revealing generalizable principles of environmental sensing across small and large cells.more » « less