skip to main content


Title: Restoring Function After Severe Spinal Cord Injury Through BioLuminescent-OptoGenetics
The ability to manipulate specific neuronal populations of the spinal cord following spinal cord injury (SCI) could prove highly beneficial for rehabilitation in patients through maintaining and strengthening still existing neuronal connections and/or facilitating the formation of new connections. A non-invasive and highly specific approach to neuronal stimulation is bioluminescent-optogenetics (BL-OG), where genetically expressed light emitting luciferases are tethered to light sensitive channelrhodopsins (luminopsins, LMO); neurons are activated by the addition of the luciferase substrate coelenterazine (CTZ). This approach utilizes ion channels for current conduction while activating the channels through the application of a small chemical compound, thus allowing non-invasive stimulation and recruitment of all targeted neurons. Rats were transduced in the lumbar spinal cord with AAV2/9 to express the excitatory LMO3 under control of a pan-neuronal or motor neuron-specific promoter. A day after contusion injury of the thoracic spine, rats received either CTZ or vehicle every other day for 2 weeks. Activation of either neuron population below the level of injury significantly improved locomotor recovery lasting beyond the treatment window. Utilizing histological and gene expression methods we identified neuronal plasticity as a likely mechanism underlying the functional recovery. These findings provide a foundation for a rational approach to spinal cord injury rehabilitation, thereby advancing approaches for functional recovery after SCI. Summary Bioluminescent optogenetic activation of spinal neurons results in accelerated and enhanced locomotor recovery after spinal cord injury in rats.  more » « less
Award ID(s):
1707352
NSF-PAR ID:
10331503
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Neurology
Volume:
12
ISSN:
1664-2295
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Irrespective of the many strategies focused on dealing with spinal cord injury (SCI), there is still no way to restore motor function efficiently or an adequate regenerative therapy. One promising method that could potentially prove highly beneficial for rehabilitation in patients is to re-engage specific neuronal populations of the spinal cord following SCI. Targeted activation may maintain and strengthen existing neuronal connections and/or facilitate the reorganization and development of new connections. BioLuminescent-OptoGenetics (BL-OG) presents an avenue to non-invasively and specifically stimulate neurons; genetically targeted neurons express luminopsins (LMOs), light-emitting luciferases tethered to light-sensitive channelrhodopsins that are activated by adding the luciferase substrate coelenterazine (CTZ). This approach employs ion channels for current conduction while activating the channels through treatment with the small molecule CTZ, thus allowing non-invasive stimulation of all targeted neurons. We previously showed the efficacy of this approach for improving locomotor recovery following severe spinal cord contusion injury in rats expressing the excitatory luminopsin 3 (LMO3) under control of a pan-neuronal and motor-neuron-specific promoter with CTZ applied through a lateral ventricle cannula. The goal of the present study was to test a new generation of LMOs based on opsins with higher light sensitivity which will allow for peripheral delivery of the CTZ. In this construct, the slow-burn Gaussia luciferase variant (sbGLuc) is fused to the opsin CheRiff, creating LMO3.2. Taking advantage of the high light sensitivity of this opsin, we stimulated transduced lumbar neurons after thoracic SCI by intraperitoneal application of CTZ, allowing for a less invasive treatment. The efficacy of this non-invasive BioLuminescent-OptoGenetic approach was confirmed by improved locomotor function. This study demonstrates that peripheral delivery of the luciferin CTZ can be used to activate LMOs expressed in spinal cord neurons that employ an opsin with increased light sensitivity. 
    more » « less
  2. Abstract

    There is growing evidence indicating the need to combine the rehabilitation and regenerative medicine fields to maximize functional recovery after spinal cord injury (SCI), but there are limited methods to synergistically combine the fields. Conductive biomaterials may enable synergistic combination of biomaterials with electric stimulation (ES), which may enable direct ES of neurons to enhance axon regeneration and reorganization for better functional recovery; however, there are three major challenges in developing conductive biomaterials: (1) low conductivity of conductive composites, (2) many conductive components are cytotoxic, and (3) many conductive biomaterials are pre‐formed scaffolds and are not injectable. Pre‐formed, noninjectable scaffolds may hinder clinical translation in a surgical context for the most common contusion‐type of SCI. Alternatively, an injectable biomaterial, inspired by lessons from bioinks in the bioprinting field, may be more translational for contusion SCIs. Therefore, in the current study, a conductive hydrogel was developed by incorporating high aspect ratio citrate‐gold nanorods (GNRs) into a hyaluronic acid and gelatin hydrogel. To fabricate nontoxic citrate‐GNRs, a robust synthesis for high aspect ratio GNRs was combined with an indirect ligand exchange to exchange a cytotoxic surfactant for nontoxic citrate. For enhanced surgical placement, the hydrogel precursor solution (i.e., before crosslinking) was paste‐like, injectable/bioprintable, and fast‐crosslinking (i.e., 4 min). Finally, the crosslinked hydrogel supported the adhesion/viability of seeded rat neural stem cells in vitro. The current study developed and characterized a GNR conductive hydrogel/bioink that provided a refinable and translational platform for future synergistic combination with ES to improve functional recovery after SCI.

     
    more » « less
  3. Abstract Objective. Transcutaneous spinal cord stimulation (TSS) has been shown to be a promising non-invasive alternative to epidural spinal cord stimulation for improving outcomes of people with spinal cord injury (SCI). However, studies on the effects of TSS on cortical activation are limited. Our objectives were to evaluate the spatiotemporal effects of TSS on brain activity, and determine changes in functional connectivity under several different stimulation conditions. As a control, we also assessed the effects of functional electrical stimulation (FES) on cortical activity. Approach . Non-invasive scalp electroencephalography (EEG) was recorded during TSS or FES while five neurologically intact participants performed one of three lower-limb tasks while in the supine position: (1) A no contraction control task, (2) a rhythmic contraction task, or (3) a tonic contraction task. After EEG denoising and segmentation, independent components (ICs) were clustered across subjects to characterize sensorimotor networks in the time and frequency domains. ICs of the event related potentials (ERPs) were calculated for each cluster and condition. Next, a Generalized Partial Directed Coherence (gPDC) analysis was performed on each cluster to compare the functional connectivity between conditions and tasks. Main results . IC analysis of EEG during TSS resulted in three clusters identified at Brodmann areas (BA) 9, BA 6, and BA 4, which are areas associated with working memory, planning, and movement control. Lastly, we found significant ( p  < 0.05, adjusted for multiple comparisons) increases and decreases in functional connectivity of clusters during TSS, but not during FES when compared to the no stimulation conditions. Significance. The findings from this study provide evidence of how TSS recruits cortical networks during tonic and rhythmic lower limb movements. These results have implications for the development of spinal cord-based computer interfaces, and the design of neural stimulation devices for the treatment of pain and sensorimotor deficit. 
    more » « less
  4. null (Ed.)
    There is growing evidence indicating the need to combine the rehabilitation and regenerative medicine fields to maximize functional recovery after spinal cord injury (SCI), but there are limited methods to synergistically combine the fields. Conductive biomaterials may enable synergistic combination of biomaterials with electric stimula-tion (ES), which may enable direct ES of neurons to enhance axon regeneration and reorganization for better functional recovery; however, there are three major chal-lenges in developing conductive biomaterials: (1) low conductivity of conductive composites, (2) many conductive components are cytotoxic, and (3) many conductive biomaterials are pre-formed scaffolds and are not injectable. Pre-formed, non-injectable scaffolds may hinder clinical translation in a surgical context for the most common contusion-type of SCI. Alternatively, an injectable biomaterial, inspired by lessons from bioinks in the bioprinting field, may be more translational for contusion SCIs. Therefore, in the current study, a conductive hydrogel was developed by incor-porating high aspect ratio citrate-gold nanorods (GNRs) into a hyaluronic acid and gelatin hydrogel. To fabricate nontoxic citrate-GNRs, a robust synthesis for high aspect ratio GNRs was combined with an indirect ligand exchange to exchange a cytotoxic surfactant for nontoxic citrate. For enhanced surgical placement, the hydro-gel precursor solution (i.e., before crosslinking) was paste-like, injectable/bioprintable, and fast-crosslinking (i.e., 4 min). Finally, the crosslinked hydrogel supported the adhesion/viability of seeded rat neural stem cells in vitro. The current study devel-oped and characterized a GNR conductive hydrogel/bioink that provided a refinable and translational platform for future synergistic combination with ES to improve functional recovery after SCI. 
    more » « less
  5. Abstract

    Neural activity and learning lead to myelin sheath plasticity in the intact central nervous system (CNS), but this plasticity has not been well‐studied after CNS injury. In the context of spinal cord injury (SCI), demyelination occurs at the lesion site and natural remyelination of surviving axons can take months. To determine if neural activity modulates myelin and axon plasticity in the injured, adult CNS, we electrically stimulated the contralesional motor cortex at 10 Hz to drive neural activity in the corticospinal tract of rats with sub‐chronic spinal contusion injuries. We quantified myelin and axonal characteristics by tracing corticospinal axons rostral to and at the lesion epicenter and identifying nodes of Ranvier by immunohistochemistry. Three weeks of daily stimulation induced very short myelin sheaths, axon branching, and thinner axons outside of the lesion zone, where remodeling has not previously been reported. Surprisingly, remodeling was particularly robust rostral to the injury which suggests that electrical stimulation can promote white matter plasticity even in areas not directly demyelinated by the contusion. Stimulation did not alter myelin or axons at the lesion site, which suggests that neuronal activity does not contribute to myelin remodeling near the injury in the sub‐chronic period. These data are the first to demonstrate wide‐scale remodeling of nodal and myelin structures of a mature, long‐tract motor pathway in response to electrical stimulation. This finding suggests that neuromodulation promotes white matter plasticity in intact regions of pathways after injury and raises intriguing questions regarding the interplay between axonal and myelin plasticity.

     
    more » « less