skip to main content

This content will become publicly available on May 1, 2023

Title: Potential Supply of Midwest Cropland for Conversion to In-Field Prairie Strips
Prairie strips planted into crop fields offer multiple environmental benefits. This study estimates the willingness of U.S. farmers to convert 5% of their largest corn-soybean field to prairie strips in exchange for payment. Using stated preference results to estimate land supply, we find that 20% of farmers are willing to adopt prairie strips at payments equivalent to average Conservation Reserve Program (CRP) rental rates, corresponding to potential conversion of 90,000 acres on 1.8m acres of cropland. Farmers are likelier to adopt in smaller fields and when they perceive that prairie strips will benefit environmental quality or agricultural productivity.
Authors:
; ;
Award ID(s):
1832042
Publication Date:
NSF-PAR ID:
10331513
Journal Name:
Land Economics
Volume:
98
Page Range or eLocation-ID:
274-291R1
ISSN:
0023-7639
Sponsoring Org:
National Science Foundation
More Like this
  1. Unsustainable agriculture practices are undermining the world's future ability to reliably produce food. Assistance programmes, such as those offered by the Natural Resource Conservation Service (NRCS) of the United States, can increase the uptake of sustainable practices, yet implementation of these alternatives in the US remains discouragingly limited. In this context, we used an interdisciplinary approach involving quantitative and qualitative data to assess the current efficacy of NRCS assistance programmes and identify areas for improvement. To do so, we first analyzed national reports of NRCS expenditures and acres treated over the last 15 years and then distributed an explorative survey to farmers and ranchers throughout Utah state. Our NRCS programme analysis suggested that historical increases in expenditures have been ineffective at increasing the number of acres treated. The survey responses indicated that both financial and non-financial factors were influential in farmer decisions. Farmers that assigned a high importance to sustainable practices were motivated by public perception and environmental stewardship while those that assigned a moderate importance were motivated by the potential return on investment. Overall, participants in NRCS programs reported more positive outcomes than expected by non-participants. We hope the findings from this study can guide future research and informmore »efforts to improve NRCS assistance programmes in Utah and other regions in the US and elsewhere.« less
  2. Transgenic crops that produce insecticidal proteins fromBacillus thuringiensis(Bt) can suppress pests and reduce insecticide sprays, but their efficacy is reduced when pests evolve resistance. Although farmers plant refuges of non-Bt host plants to delay pest resistance, this tactic has not been sufficient against the western corn rootworm,Diabrotica virgifera virgifera. In the United States, some populations of this devastating pest have rapidly evolved practical resistance to Cry3 toxins and Cry34/35Ab, the only Bt toxins in commercially available corn that kill rootworms. Here, we analyzed data from 2011 to 2016 on Bt corn fields producing Cry3Bb alone that were severely damaged by this pest in 25 crop-reporting districts of Illinois, Iowa, and Minnesota. The annual mean frequency of these problem fields was 29 fields (range 7 to 70) per million acres of Cry3Bb corn in 2011 to 2013, with a cost of $163 to $227 per damaged acre. The frequency of problem fields declined by 92% in 2014 to 2016 relative to 2011 to 2013 and was negatively associated with rotation of corn with soybean. The effectiveness of corn rotation for mitigating Bt resistance problems did not differ significantly between crop-reporting districts with versus without prevalent rotation-resistant rootworm populations. In some analyses,more »the frequency of problem fields was positively associated with planting of Cry3 corn and negatively associated with planting of Bt corn producing both a Cry3 toxin and Cry34/35Ab. The results highlight the central role of crop rotation for mitigating impacts ofD. v. virgiferaresistance to Bt corn.

    « less
  3. Agricultural landscapes can be managed to protect biodiversity and maintain ecosystem services. One approach to achieve this is to restore native perennial vegetation within croplands. Where rowcrops have displaced prairie, as in the US Midwest, restoration of native perennial vegetation can align with crops in so called “prairie strips.” We tested the effect of prairie strips in addition to other management practices on a variety of taxa and on a suite of ecosystem services. To do so, we worked within a 33-year-old experiment that included treatments that varied methods of agricultural management across a gradient of land use intensity. In the two lowest intensity crop management treatments, we introduced prairie strips that occupied 5% of crop area. We addressed three questions: (1) What are the effects of newly established prairie strips on the spillover of biodiversity and ecosystem services into cropland? (2) How does time since prairie strip establishment affect biodiversity and ecosystem services? (3) What are the tradeoffs and synergies among biodiversity conservation, non-provisioning ecosystem services, and provisioning ecosystem services (crop yield) across a land use intensity gradient (which includes prairie strips)? Within prairie strip treatments, where sampling effort occurred within and at increasing distance from strips, dung beetlemore »abundance, spider abundance and richness, active carbon, decomposition, and pollination decreased with distance from prairie strips, and this effect increased between the first and second year. Across the entire land use intensity gradient, treatments with prairie strips and reduced chemical inputs had higher butterfly abundance, spider abundance, and pollination services. In addition, soil organic carbon, butterfly richness, and spider richness increased with a decrease in land use intensity. Crop yield in one treatment with prairie strips was equal to that of the highest intensity management, even while including the area taken out of production. We found no effects of strips on ant biodiversity and greenhouse gas emissions (N 2 O and CH 4 ). Our results show that, even in early establishment, prairie strips and lower land use intensity can contribute to the conservation of biodiversity and ecosystem services without a disproportionate loss of crop yield.« less
  4. Precision agricultural technologies (PA) such as global positioning system tools have been commercially available since the early 1990s and they are widely thought to have environmental and economic benefit; however, adoption studies show uneven adoption among farmers in the U.S. and Europe. This study aims to tackle a lingering puzzle regarding why some farmers adopt precision agriculture as an approach to food production and why others do not. The specific objective of this study is to examine the social and biophysical determinants of farmers’ adoption of PA. This paper fills a research gap by including measurements of farmer identity—specifically their own conceptions of their role in the food system—as well as their perceptions of biophysical risks as these relate to the adoption of PA among a large sample of Midwestern U.S. farmers. The study has identified that farmer identity and perceptions of environmental risk do indeed influence PA adoption and that these considerations ought to be incorporated into further studies of PA adoption in other jurisdictions. The findings also appear to highlight the social force of policy and industry efforts to frame PA as not only good for productivity and efficiency but also as an ecologically beneficial technology.
  5. Abstract

    Over 70% of the 62 million hectares of cropland in the Midwestern United States is grown in corn-based rotations. These crop rotations are caught in a century-long simplification trend despite robust evidence demonstrating yield and soil benefits from diversified rotations. Our ability to explore and explain this trend will come in part from observing the biophysical and policy influences on farmers’ crop choices at one key level of management: the field. Yet field-level crop rotation patterns remain largely unstudied at regional scales and will be essential for understanding how national agricultural policy manifests locally and interacts with biophysical phenomena to erode—or bolster—soil and environmental health, agricultural resilience, and farmers’ livelihoods. We developed a novel indicator of crop rotational complexity and applied it to 1.5 million fields across the US Midwest. We used bootstrapped linear mixed models to regress field-level rotational complexity against biophysical (land capability, precipitation) and policy-driven (distance to the nearest biofuel plant and grain elevator) factors. After accounting for spatial autocorrelation, there were statistically clear negative relationships between rotational complexity and biophysical factors (land capability and precipitation during the growing season), indicating decreased rotation in prime growing areas. A positive relationship between rotational complexity and distance tomore »the nearest biofuel plant suggests policy-based, as well as biophysical, constraints on regional rotations. This novel RCI is a promising tool for future fine-scale rotational analysis and demonstrates that the United States’ most fertile soils are the most prone to degradation, with recent policy choices further exacerbating this trend.

    « less