skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 14 until 2:00 AM ET on Saturday, November 15 due to maintenance. We apologize for the inconvenience.


Title: Computed Microtomography (Micro-CT) in the Anatomical Study and Identification of Solenogastres (Mollusca)
Solenogastres are vermiform marine molluscs characterised by an aculiferous mantle, a longitudinal ventral pedal groove and a terminal or subterminal pallial cavity. Their classification is based in part on the type of mantle sclerites, but identification to even the family level generally requires the study of internal anatomical characters. Taxonomically important internal characters include those related to radular structure, the type of ventrolateral glandular organs of the pharynx and the reproductive system, among others. In order to study their internal anatomical organisation, according to the classical reconstruction method, serial histological sections of specimens are made, from which the 2D internal anatomy of the specimen can be reconstructed manually. However, this is a time-consuming technique that results in destruction of the specimen. Computed microtomography or micro-CT is a non-destructive technique based on the measurement of the attenuation of X-rays as they pass through a specimen. Micro-CT is faster than histology for studying internal anatomy and it is non-destructive, meaning that specimens may be used for e.g., DNA extraction or retained as intact vouchers. In this paper, the utility of micro-CT for studying taxonomically important internal anatomical structures was assessed. Results of the 3D anatomical study of the soft parts of four specimens of three species using micro-CT are presented: Proneomenia sluiteri Hubrecht, 1880, Dorymenia menchuescribanae García-Álvarez et al., 2000 and Anamenia gorgonophila Kowalevsky, 1880. Micro-CT enabled detailed study of most taxonomically important anatomical characters, precise measurements of structures, and observation of the relative position of organs from a variety of angles. However, it was not possible to observe the radula and some details of the ventral foregut organs could not be discerned. Despite these limitations, results of this study highlight micro-CT as a valuable tool to compliment histology in the study of solenogaster anatomy and in non-destructively identifying animals to the family and even genus-level.  more » « less
Award ID(s):
1846174
PAR ID:
10331544
Author(s) / Creator(s):
Date Published:
Journal Name:
Frontiers in marine science
ISSN:
2296-7745
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    A new species of solenogaster (Mollusca, Aplacophora) from the Angola Basin is described: Macellomenia profundorum n. sp. The studied specimen was collected during the DIVA 1 expedition (Latitudinal Gradients of Deep-Sea BioDIVersity in the Atlantic Ocean). The description is based primarily on the sclerites and the internal anatomy (histological study). Macellomenia profundorum n. sp. is the first species of the family to be described from the southern hemisphere and constitutes its deepest record (5400 m deep). Even though only anterior anatomical characters are known, these and especially the radula and mantle sclerites are enough to justify that it is a new species. Amended diagnoses are also provided for the family and genus. 
    more » « less
  2. Abstract Although Calligenethlon watsoni, an enigmatic embolomere from Joggins, Nova Scotia, has been known since 1934, an in-depth description of its anatomy (including CT data) and updated taxonomic diagnosis has yet to be completed. Additionally, subsequently discovered embolomere specimens have been referred to the taxon simply if they display embolomere traits. As a result, Calligenethlon is represented by a collection of specimens united on the basis of largely non-diagnostic traits. Here, the exquisitely preserved specimen identified as Calligenethlon, NSM 994GF1.1, is described in detail using micro-computed tomography. Comparison of this specimen to the holotype supports its referral to Calligenethlon and the anatomical knowledge gained here allows for the generation of a more robust morphological diagnosis of the genus Calligenethlon. We then re-evaluate all other referred specimens to determine which are consistent with their referral to the taxon, and which are inconclusively referred to the taxon. These data are discussed as they provide new insights into the anatomy of Calligenethlon and the diversity of embolomeres at the Joggins’ locality. 
    more » « less
  3. Abstract Scolecophidian snakes have long posed challenges for scholars interested in elucidating their anatomy. The importance, and relative paucity, of high‐quality anatomical data pertaining to scolecophidians was brought into sharp focus in the late 20 th century as part of a controversy over the phylogeny and ecological origin of snakes. The basal position of scolecophidians in the phylogeny of snakes makes their anatomy, behavior, ecology, and evolution especially important for such considerations. The depauperate fossil record for the group meant that advances in understanding their evolutionary history were necessarily tied to biogeographic distributions and anatomical interpretations of extant taxa. Osteological data, especially data pertaining to the skull and mandible, assumed a dominant role in shaping historical and modern perspectives of the evolution of scolecophidians. Traditional approaches to the exploration of the anatomy of these snakes relied heavily upon serial‐sectioned specimens and cleared‐and‐stained specimens. The application of X‐ray computed tomography (CT) to the study of scolecophidians revolutionized our understanding of the osteology of the group, and now, via diffusible iodine‐based contrast‐enhanced computed tomography (diceCT), is yielding data sets on internal soft anatomical features as well. CT data sets replicate many aspects of traditional anatomical preparations, are readily shared with a global community of scholars, and now are available for unique holotype and other rare specimens. The increasing prevalence and relevance of CT data sets is a strong incentive for the establishment and maintenance of permanent repositories for digital data. 
    more » « less
  4. Abstract Volumetric data provide unprecedented structural insight to the reproductive tract and add vital anatomical context to the relationships between organs. The morphology of the female reproductive tract in non-avian reptiles varies between species, corresponding to a broad range of reproductive modes and providing valuable insight to comparative investigations of reproductive anatomy. However, reproductive studies in reptilian models, such as the brown anole studied here, have historically relied on histological methods to understand the anatomy. While these methods are highly effective for characterizing the cell types present in each organ, histological methods lose the 3D relationships between images and leave the architecture of the organ system poorly understood. We present the first comprehensive volumetric analyses of the female brown anole reproductive tract using two non-invasive, non-destructive imaging modalities: micro-computed tomography (microCT) and optical coherence tomography (OCT). Both are specialized imaging technologies that facilitate high-throughput imaging and preserve three-dimensional information. This study represents the first time that microCT has been used to study all reproductive organs in this species and the very first time that OCT has been applied to this species. We show how the non-destructive volumetric imaging provided by each modality reveals anatomical context including orientation and relationships between reproductive organs of the anole lizard. In addition to broad patterns of morphology, both imaging modalities provide the high resolution necessary to capture details and key anatomical features of each organ. We demonstrate that classic histological features can be appreciated within whole-organ architecture in volumetric imaging using microCT and OCT, providing the complementary information necessary to understand the relationships between tissues and organs in the reproductive system. This side-by-side imaging analysis using microCT and OCT allows us to evaluate the specific advantages and limitations of these two methods for the female reptile reproductive system. 
    more » « less
  5. null (Ed.)
    So far, of the 292 known species of solenogasters (Mollusca, Aplacophora), 62 belong to the clade Pholidoskepia Salvini-Plawen, 1978. Of these, only two have an abyssal distribution (3500–6000 m depth). Among Pholidoskepia, Dondersiidae Simroth, 1893 is the most diverse family. This study contributes to the knowledge of this family with the description of one new genus and six new species from the abyssal South Atlantic Ocean: Dondersia ? foraminosa sp. n., Nematomenia divae sp. n., Nematomenia brasiliensis sp. n., Nematomenia ? guineana sp. n., Helluoherpia vieiralaneroi sp. n. and Inopinatamenia (gen. n.) calamitosa sp. n. Specimens were collected during DIVA (Latitudinal Gradients of Deep-Sea BioDIVersity in the Atlantic Ocean) expeditions in the Guinea (DIVA 2 Me 63/2, 2005) and Brazil (DIVA 3 Me 79/1, 2008) Basins. Specimens were characterized based primarily on the sclerites and internal anatomy, which was studied using histology. The importance of the radula and mantle sclerites for taxonomy is emphasized. Amended diagnoses for the family and some genera within this family are provided. This contribution increases the described diversity of Dondersiidae to ten genera and 38 species and highlights the need for more study of solenogasters in the deep sea. 
    more » « less