skip to main content


Title: Electromagnetic Signatures from Supermassive Binary Black Holes Approaching Merger
Abstract

We present fully relativistic predictions for the electromagnetic emission produced by accretion disks surrounding spinning and nonspinning supermassive binary black holes on the verge of merging. We use the codeBothrosto post-process data from 3D general relativistic magnetohydrodynamic simulations via ray-tracing calculations. These simulations model the dynamics of a circumbinary disk and the mini-disks that form around two equal-mass black holes orbiting each other at an initial separation of 20 gravitational radii, and evolve the system for more than 10 orbits in the inspiral regime. We model the emission as the sum of thermal blackbody radiation emitted by an optically thick accretion disk and a power-law spectrum extending to hard X-rays emitted by a hot optically thin corona. We generate time-dependent spectra, images, and light curves at various frequencies to investigate intrinsic periodic signals in the emission, as well as the effects of the black hole spin. We find that prograde black hole spin makes mini-disks brighter since the smaller innermost stable circular orbit angular momentum demands more dissipation before matter plunges to the horizon. However, compared to mini-disks in larger separation binaries with spinning black holes, our mini-disks are less luminous: unlike those systems, their mass accretion rate is lower than in the circumbinary disk, and they radiate with lower efficiency because their inflow times are shorter. Compared to a single black hole system matched in mass and accretion rate, these binaries have spectra noticeably weaker and softer in the UV. Finally, we discuss the implications of our findings for the potential observability of these systems.

 
more » « less
Award ID(s):
2110338 2018420 2031744 1811228 2009330 1912632 1707946 1707826 2009260 1726215
NSF-PAR ID:
10364911
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
928
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 137
Size(s):
["Article No. 137"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We perform a full 3D general relativistic magnetohydrodynamical (GRMHD) simulation of an equal-mass, spinning, binary black hole approaching merger, surrounded by a circumbinary disk and with a minidisk around each black hole. For this purpose, we evolve the ideal GRMHD equations on top of an approximated spacetime for the binary that is valid in every position of space, including the black hole horizons, during the inspiral regime. We use relaxed initial data for the circumbinary disk from a previous long-term simulation, where the accretion is dominated by am= 1 overdensity called the lump. We compare our new spinning simulation with a previous non-spinning run, studying how spin influences the minidisk properties. We analyze the accretion from the inner edge of the lump to the black hole, focusing on the angular momentum budget of the fluid around the minidisks. We find that minidisks in the spinning case have more mass over a cycle than the non-spinning case. However, in both cases we find that most of the mass received by the black holes is delivered by the direct plunging of material from the lump. We also analyze the morphology and variability of the electromagnetic fluxes, and we find they share the same periodicities of the accretion rate. In the spinning case, we find that the outflows are stronger than the non-spinning case. Our results will be useful to understand and produce realistic synthetic light curves and spectra, which can be used in future observations.

     
    more » « less
  2. Abstract

    We present a set of six general relativistic, multifrequency, radiation magnetohydrodynamic simulations of thin accretion disks with different target mass accretion rates around black holes with spins ranging from nonrotating to rapidly spinning. The simulations use theM1closure scheme with 12 independent frequency (or energy) bins ranging logarithmically from 5 × 10−3keV to 5 × 103keV. The multifrequency capability allows us to generate crude spectra and energy-dependent light curves directly from the simulations without a need for special postprocessing. While we generally find roughly thermal spectra with peaks around 1–4 keV, our high-spin cases showed harder-than-expected tails for the soft or thermally dominant state. This leads to radiative efficiencies that are up to five times higher than expected for a Novikov–Thorne disk at the same spin. We attribute these high efficiencies to the high-energy, coronal emission. These coronae mostly occupy the effectively optically thin regions near the inner edges of the disks and also cover or sandwich the inner ∼15GM/c2of the disks.

     
    more » « less
  3. Abstract

    Hydrodynamical interactions between binaries and circumbinary disks (CBDs) play an important role in a variety of astrophysical systems, from young stellar binaries to supermassive black hole binaries. Previous simulations of CBDs have mostly employed locally isothermal equations of state. We carry out 2D viscous hydrodynamic simulations of CBDs around equal-mass, circular binaries, treating the gas thermodynamics by thermal relaxation toward equilibrium temperature (the constant-βcooling ansatz, whereβis the cooling time in units of the local Keplerian time). As an initial study, we use the grid-based codeAthena++on a polar grid, covering an extended disk outside the binary co-orbital region. We find that with a longer cooling time, the accretion variability is gradually suppressed, and the morphology of the CBD becomes more symmetric. The disk also shows evidence of hysteresis behavior depending on the initial conditions. Gas cooling also affects the rate of angular momentum transfer between the binary and the CBD, where given our adopted disk thickness and viscosity (H/r∼ 0.1 andα∼ 0.1), the binary orbit expands while undergoing accretion for mostβvalues between 0 and 4.0 except over a narrow range of intermediateβvalues. The validity of using a polar grid excising the central domain is also discussed.

     
    more » « less
  4. Abstract

    We study the effects of general relativity (GR) on the evolution and alignment of circumbinary disks around binaries on all scales. We implement relativistic apsidal precession of the binary into the hydrodynamics codephantom. We find that the effects of GR can suppress the stable polar alignment of a circumbinary disk, depending on how the relativistic binary apsidal precession timescale compares to the disk nodal precession timescale. Studies of circumbinary disk evolution typically ignore the effects of GR, which is an appropriate simplification for low-mass or widely separated binary systems. In this case, polar alignment occurs, provided that the disks initial misalignment is sufficiently large. However, systems with a very short relativistic precession timescale cannot polar align and instead move toward coplanar alignment. In the intermediate regime where the timescales are similar, the outcome depends upon the properties of the disk. Polar alignment is more likely in the wavelike disk regime (where the disk viscosity parameter is less than the aspect ratio,α<H/r), since the disk is in good radial communication. In the viscous disk regime, disk breaking is more likely. Multiple rings can destructively interact with one another, resulting in short disk lifetimes and the disk moving toward coplanar alignment. Around main-sequence star or stellar mass black hole binaries, polar alignment may be suppressed far from the binary, but in general, the inner parts of the disk can align to polar. Polar alignment may be completely suppressed for disks around supermassive black holes for close binary separations.

     
    more » « less
  5. Abstract

    The Event Horizon Telescope (EHT) has produced images of two supermassive black holes, Messier 87* (M 87*) and Sagittarius A* (Sgr A*). The EHT collaboration used these images to indirectly constrain black hole parameters by calibrating measurements of the sky-plane emission morphology to images of general relativistic magnetohydrodynamic (GRMHD) simulations. Here, we develop a model for directly constraining the black hole mass, spin, and inclination through signatures of lensing, redshift, and frame dragging, while simultaneously marginalizing over the unknown accretion and emission properties. By assuming optically thin, axisymmetric, equatorial emission near the black hole, our model gains orders of magnitude in speed over similar approaches that require radiative transfer. Using 2017 EHT M 87* baseline coverage, we use fits of the model to itself to show that the data are insufficient to demonstrate existence of the photon ring. We then survey time-averaged GRMHD simulations fitting EHT-like data, and find that our model is best-suited to fitting magnetically arrested disks, which are the favored class of simulations for both M 87* and Sgr A*. For these simulations, the best-fit model parameters are within ∼10% of the true mass and within ∼10° for inclination. With 2017 EHT coverage and 1% fractional uncertainty on amplitudes, spin is unconstrained. Accurate inference of spin axis position angle depends strongly on spin and electron temperature. Our results show the promise of directly constraining black hole spacetimes with interferometric data, but they also show that nearly identical images permit large differences in black hole properties, highlighting degeneracies between the plasma properties, spacetime, and, most crucially, the unknown emission geometry when studying lensed accretion flow images at a single frequency.

     
    more » « less