skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spatial and temporal variation in the species diversity of coastal California fish eggs
Ichthyoplankton studies can be used to assess the abundance, distribution, and reproductive activity of marine fishes, but few studies have monitored spawning activity at inshore sites. This study utilized weekly plankton sampling to construct a year-long time series of fish spawning at 6 pier sites along the California coast—Santa Cruz, San Luis Obispo, Santa Barbara, Santa Monica, Newport Beach, and La Jolla; sampling at the La Jolla site continues ongoing monitoring initiated in 2012. Fish eggs were sorted from the collected plankton and identified to species level using DNA barcoding of the COI and 16S genes. While only one year of data has been collected from 5 of the sites, the 2 sites north of Point Conception show markedly reduced diversity compared to the southern sites. Although the species observed reflect the local environment of each site, this pattern of reduced diversity at the northern sites is consistent with the well-documented decline in species richness with latitude along the California coast. The 7-year time series from La Jolla has revealed that spawning activity varies greatly among years, both in terms of egg production and species diversity, with a continuing trend of highest egg numbers in years with colder average winter sea surface temperature.  more » « less
Award ID(s):
1637632
PAR ID:
10331733
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Marine Ecology Progress Series
Volume:
669
ISSN:
0171-8630
Page Range / eLocation ID:
139 to 149
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Belgrano, Andrea (Ed.)
    We found a startling correlation (Pearson ρ > 0.97) between a single event in daily sea surface temperatures each spring, and peak fish egg abundance measurements the following summer, in 7 years of approximately weekly fish egg abundance data collected at Scripps Pier in La Jolla California. Even more surprising was that this event-based result persisted despite the large and variable number of fish species involved (up to 46), and the large and variable time interval between trigger and response (up to ~3 months). To mitigate potential over-fitting, we made an out-of-sample prediction beyond the publication process for the peak summer egg abundance observed at Scripps Pier in 2020 (available on bioRxiv). During peer-review, the prediction failed, and while it would be tempting to explain this away as a result of the record-breaking toxic algal bloom that occurred during the spring (9x higher concentration of dinoflagellates than ever previously recorded), a re-examination of our methodology revealed a potential source of over-fitting that had not been evaluated for robustness. This cautionary tale highlights the importance of testable true out-of-sample predictions of future values that cannot (even accidentally) be used in model fitting, and that can therefore catch model assumptions that may otherwise escape notice. We believe that this example can benefit the current push towards ecology as a predictive science and support the notion that predictions should live and die in the public domain, along with the models that made them. 
    more » « less
  2. Mazzuca, Silvia (Ed.)
    Seagrass beds are disappearing at a record pace despite their known value to our oceans and coastal communities. Simultaneously, our coastlines are under the constant pressure of climate change which is impacting their chemical, physical and biological characteristics. It is thus pertinent to evaluate and record habitat use so we can understand how these different environments contribute to local biodiversity. This study evaluates the assemblages of fish found at fiveZosterabeds in Southern California using environmental DNA (eDNA) metabarcoding. eDNA is a powerful biodiversity monitoring tool that offers key advantages to conventional monitoring. Results from our eDNA study found 78 species of fish that inhabit these five beds around Southern California representing embayment, open coastal mainland and open coastal island settings. While each bed had the same average number of species found throughout the year, the composition of these fish assemblages was strongly site dependent. There were 35 fish that were found at both open coast and embayment seagrass beds, while embayment seagrass sites had 20 unique fish and open coast sites had 23 unique fish. These results demonstrate that seagrass fish assemblages are heterogenous based on their geographic positioning and that marine managers must take this into account for holistic conservation and restoration efforts. 
    more » « less
  3. ABSTRACT Changing ocean conditions driven by anthropogenic activities may have a negative impact on fisheries by increasing stress and disease. To understand how environment and host biology drives mucosal microbiomes in a marine fish, we surveyed five body sites (gill, skin, digesta, gastrointestinal tract [GI], and pyloric ceca) from 229 Pacific chub mackerel, Scomber japonicus , collected across 38 time points spanning 1 year from the Scripps Institution of Oceanography Pier (La Jolla, CA). Mucosal sites had unique microbial communities significantly different from the surrounding seawater and sediment communities with over 10 times more total diversity than seawater. The external surfaces of skin and gill were more similar to seawater, while digesta was more similar to sediment. Alpha and beta diversity of the skin and gill was explained by environmental and biological factors, specifically, sea surface temperature, chlorophyll a , and fish age, consistent with an exposure gradient relationship. We verified that seasonal microbial changes were not confounded by regional migration of chub mackerel subpopulations by nanopore sequencing a 14,769-bp region of the 16,568-bp mitochondria across all temporal fish specimens. A cosmopolitan pathogen, Photobacterium damselae , was prevalent across multiple body sites all year but highest in the skin, GI, and digesta between June and September, when the ocean is warmest. The longitudinal fish microbiome study evaluates the extent to which the environment and host biology drives mucosal microbial ecology and establishes a baseline for long-term surveys linking environment stressors to mucosal health of wild marine fish. IMPORTANCE Pacific chub mackerel, Scomber japonicus , are one of the largest and most economically important fisheries in the world. The fish is harvested for both human consumption and fish meal. Changing ocean conditions driven by anthropogenic stressors like climate change may negatively impact fisheries. One mechanism for this is through disease. As waters warm and chemistry changes, the microbial communities associated with fish may change. In this study, we performed a holistic analysis of all mucosal sites on the fish over a 1-year time series to explore seasonal variation and to understand the environmental drivers of the microbiome. Understanding seasonality in the fish microbiome is also applicable to aquaculture production for producers to better understand and predict when disease outbreaks may occur based on changing environmental conditions in the ocean. 
    more » « less
  4. Abstract Allen's Hummingbird comprises two subspecies, one migratory (Selasphorus sasin sasin) and one nonmigratory (S. s. sedentarius). The nonmigratory subspecies, previously endemic to the California Channel Islands, apparently colonized the California mainland on the Palos Verdes Peninsula some time before 1970 and now breeds throughout coastal southern California. We sequenced and compared populations of mainland nonmigratory Allen's Hummingbird to Channel Island populations from Santa Catalina, San Clemente, and Santa Cruz Island. We found no evidence of founder effects on the mainland population. Values of nucleotide diversity on the mainland were higher than on the Channel Islands. There were low levels of divergence between the Channel Islands and the mainland, and Santa Cruz Island was the most genetically distinct. Ecological niche models showed that rainfall and temperature variables on the Channel Islands are similar in the Los Angeles basin and predicted continued expansion of nonmigratory Allen's Hummingbird north along the coast and inland. We also reviewed previous genetic studies of vertebrate species found on the Channel Islands and mainland and showed that broad conclusions regarding island–mainland patterns remain elusive. Challenges include the idiosyncratic nature of colonization itself as well as the lack of a comprehensive approach that incorporates similar markers and sampling strategies across taxa, which, within the context of a comparative study of island–mainland relationships, may lead to inconsistent results. 
    more » « less
  5. null (Ed.)
    Variation in light and temperature can influence the genetic diversity and structure of marine plankton communities. While open-ocean plankton communities receive much scientific attention, little is known about how environmental variation affects plankton communities on tropical coral reefs. Here, we characterize eukaryotic plankton communities on coral reefs across the Bocas del Toro Archipelago, Panama´. Temperature loggers were deployed, and midday light levels were measured to quantify environmental differences across reefs at four inshore and four offshore sites (Inshore = Punta Donato, Smithsonian Tropical Research Institute (STRI) Point, Cristobal, Punta Laurel and Offshore = Drago Mar, Bastimentos North, Bastimentos South, and Cayo de Agua). Triplicate vertical plankton tows were collected midday, and high-throughput 18S ribosomal DNA metabarcoding was leveraged to investigate the relationship between eukaryotic plankton community structure and inshore/offshore reef environments. Plankton communities from STRI Point were additionally characterized in the morning (* 08:00), midday (* 12:00), and late-day (* 16:00) to quantify temporal variation within a single site. We found that inshore reefs experienced higher average seawater temperatures, while offshore sites offered higher light levels, presumably associated with reduced water turbidity on reefs further from shore. These significant environmental differences between inshore and offshore reefs corresponded with overall plankton community differences. We also found that temporal variation played a structuring role within these plankton communities, and conclude that time of community sampling is an important consideration for future studies. Follow-up studies focusing on more intensive sampling efforts across space and time, coupled with techniques that can detect more subtle genetic differences between and within communities will more fully capture plankton dynamics in this region and beyond. 
    more » « less