skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Direct laser writing for cardiac tissue engineering: a microfluidic heart on a chip with integrated transducers
We have developed a microfluidic platform for engineering cardiac microtissues in highly-controlled microenvironments. The platform is fabricated using direct laser writing (DLW) lithography and soft lithography, and contains four separate devices. Each individual device houses a cardiac microtissue and is equipped with an integrated strain actuator and a force sensor. Application of external pressure waves to the platform results in controllable time-dependent forces on the microtissues. Conversely, oscillatory forces generated by the microtissues are transduced into measurable electrical outputs. We demonstrate the capabilities of this platform by studying the response of cardiac microtissues derived from human induced pluripotent stem cells (hiPSC) under prescribed mechanical loading and pacing. This platform will be used for fundamental studies and drug screening on cardiac microtissues.  more » « less
Award ID(s):
1647837
PAR ID:
10331881
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Lab on a Chip
Volume:
21
Issue:
9
ISSN:
1473-0197
Page Range / eLocation ID:
1724 to 1737
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Tolkacheva, Elena G (Ed.)
    Recent advances in human induced pluripotent stem cell (hiPSC)-derived cardiac microtissues provide a unique opportunity for cardiotoxic assessment of pharmaceutical and environmental compounds. Here, we developed a series of automated data processing algorithms to assess changes in action potential (AP) properties for cardiotoxicity testing in 3D engineered cardiac microtissues generated from hiPSC-derived cardiomyocytes (hiPSC-CMs). Purified hiPSC-CMs were mixed with 5–25% human cardiac fibroblasts (hCFs) under scaffold-free conditions and allowed to self-assemble into 3D spherical microtissues in 35-microwell agarose gels. Optical mapping was performed to quantify electrophysiological changes. To increase throughput, AP traces from 4x4 cardiac microtissues were simultaneously acquired with a voltage sensitive dye and a CMOS camera. Individual microtissues showing APs were identified using automated thresholding after Fourier transforming traces. An asymmetric least squares method was used to correct non-uniform background and baseline drift, and the fluorescence was normalized (ΔF/F0). Bilateral filtering was applied to preserve the sharpness of the AP upstroke. AP shape changes under selective ion channel block were characterized using AP metrics including stimulation delay, rise time of AP upstroke, APD30, APD50, APD80, APDmxr(maximum rate change of repolarization), and AP triangulation (APDtri= APDmxr−APD50). We also characterized changes in AP metrics under various ion channel block conditions with multi-class logistic regression and feature extraction using principal component analysis of human AP computer simulations. Simulation results were validated experimentally with selective pharmacological ion channel blockers. In conclusion, this simple and robust automated data analysis pipeline for evaluating key AP metrics provides an excellentin vitrocardiotoxicity testing platform for a wide range of environmental and pharmaceutical compounds. 
    more » « less
  2. Abstract Cardiac microtissues provide a promising platform for disease modeling and developmental studies, which require the close monitoring of the multimodal excitation-contraction dynamics. However, no existing assessing tool can track these multimodal dynamics across the live tissue. We develop a tissue-like mesh bioelectronic system to track these multimodal dynamics. The mesh system has tissue-level softness and cell-level dimensions to enable stable embedment in the tissue. It is integrated with an array of graphene sensors, which uniquely converges both bioelectrical and biomechanical sensing functionalities in one device. The system achieves stable tracking of the excitation-contraction dynamics across the tissue and throughout the developmental process, offering comprehensive assessments for tissue maturation, drug effects, and disease modeling. It holds the promise to provide more accurate quantification of the functional, developmental, and pathophysiological states in cardiac tissues, creating an instrumental tool for improving tissue engineering and studies. 
    more » « less
  3. Abstract Cardiac tissues are able to adjust their contractile behavior to adapt to the local mechanical environment. Nonuniformity of the native tissue mechanical properties contributes to the development of heart dysfunctions, yet the current in vitro cardiac tissue models often fail to recapitulate the mechanical nonuniformity. To address this issue, a 3D cardiac microtissue model is developed with engineered mechanical nonuniformity, enabled by 3D‐printed hybrid matrices composed of fibers with different diameters. When escalating the complexity of tissue mechanical environments, cardiac microtissues start to develop maladaptive hypercontractile phenotypes, demonstrated in both contractile motion analysis and force‐power analysis. This novel hybrid system could potentially facilitate the establishment of “pathologically‐inspired” cardiac microtissue models for deeper understanding of heart pathology due to nonuniformity of the tissue mechanical environment. 
    more » « less
  4. Abstract Cardiotoxicity is one of the most serious side effects of cancer chemotherapy. Current approaches to monitoring of chemotherapy‐induced cardiotoxicity (CIC) as well as model systems that develop in vivo or in vitro CIC platforms fail to notice early signs of CIC. Moreover, breast cancer (BC) patients with preexisting cardiac dysfunctions may lead to different incident levels of CIC. Here, a model is presented for investigating CIC where not only induced pluripotent stem cell (iPSC)‐derived cardiac tissues are interacted with BC tissues on a dual‐organ platform, but electrochemical immuno‐aptasensors can also monitor cell‐secreted multiple biomarkers. Fibrotic stages of iPSC‐derived cardiac tissues are promoted with a supplement of transforming growth factor‐β 1 to assess the differential functionality in healthy and fibrotic cardiac tissues after treatment with doxorubicin (DOX). The production trend of biomarkers evaluated by using the immuno‐aptasensors well‐matches the outcomes from conventional enzyme‐linked immunosorbent assay, demonstrating the accuracy of the authors’ sensing platform with much higher sensitivity and lower detection limits for early monitoring of CIC and BC progression. Furthermore, the versatility of this platform is demonstrated by applying a nanoparticle‐based DOX‐delivery system. The proposed platform would potentially help allow early detection and prediction of CIC in individual patients in the future. 
    more » « less
  5. A critical role of vascular endothelium is as a semi-permeable barrier, dynamically regulating the flux of solutes between blood and the surrounding tissue. Existing platforms that quantify endothelial function in vitro are either significantly throughput limited or overlook physiologically relevant extracellular matrix (ECM) interactions and thus do not recapitulate in vivo function. Leveraging droplet microfluidics, we developed a scalable platform to measure endothelial function in nanoliter-volume, ECM-based microtissues. In this study, we describe our high-throughput method for fabricating endothelial-coated collagen microtissues that incorporate physiologically relevant cell–ECM interactions. We showed that the endothelial cells had characteristic morphology, expressed tight junction proteins, and remodeled the ECM via compaction and deposition of basement membrane. We also measured macromolecular permeability using two optical modalities, and found the cell layers: (1) had permeability values comparable to in vivo measurements and (2) were responsive to physiologically-relevant modulators of endothelial permeability (TNF-α and TGF-β). This is the first demonstration, to the authors’ knowledge, of high-throughput assessment ( n > 150) of endothelial permeability on natural ECM. Additionally, this technology is compatible with standard cell culture equipment ( e.g. multi-well plates) and could be scaled up further to be integrated with automated liquid handling systems and automated imaging platforms. Overall, this platform recapitulates the functions of traditional transwell inserts, but extends application to high-throughput studies and introduces new possibilities for interrogating cell–cell and cell–matrix interactions. 
    more » « less