skip to main content


Title: Enhanced Efficiency and Stability in Sb 2 S 3 Seed Layer Buffered Sb 2 Se 3 Solar Cells
Abstract

Antimony selenide (Sb2Se3) has excellent directional optical and electronic behaviors due to its quasi‐1D nanoribbons structure. The photovoltaic performance of Sb2Se3solar cells largely depends on the orientation of the nanoribbons. It is desired to grow these Sb2Se3ribbons normal to the substrate to enhance photoexcited carrier transport. Therefore, it is necessary to develop a strategy for the vertical growth of Sb2Se3nanoribbons to achieve high‐efficiency solar cells. Since antimony sulfide (Sb2S3) and Sb2Se3are from the same space group (Pbnm) and have the same crystal structure, herein an ultrathin layer (≈20 nm) of Sb2S3has been used to assist the vertical growth of Sb2Se3nanoribbons to improve the overall efficiency of Sb2Se3solar cell. The Sb2S3thin layer deposited by the hydrothermal process helps the Sb2Se3ribbons grow normal to the substrate and increases the efficiency from 5.65% to 7.44% through the improvement of all solar cell parameters. This work is expected to open a new direction to tailor the Sb2Se3grain growth and further develop the Sb2Se3solar cell in the future.

 
more » « less
Award ID(s):
1944374 2127640 2019473
NSF-PAR ID:
10375218
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials Interfaces
Volume:
9
Issue:
21
ISSN:
2196-7350
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The antimony selenide thin film solar cells technology becomes promising due to its excellent anisotropic charge transport and brilliant light absorption capability. Especially, the device performance heavily relies on the vertically oriented Sb2Se3grain to promote photoexcited carrier transport. However, crystalline orientation control has been a major issue in Sb2Se3thin film solar cells. Herein, a new strategy has been developed to tailor the crystal growth of Sb2Se3ribbons perpendicular to the substrate by using the structural heterostructured CdS buffer layer. The heterostructured CdS buffer layer is formed by a dual layer of CdS nanorods and nanoparticles. The hexagonal CdS nanorods passivated by a thin cubic CdS nanoparticle layer can promote [211] and [221] directional growth of Sb2Se3ribbons using a close space sublimation approach. The improved buffer/absorber interface, reduced interface defects, and recombination loss contribute to the improved device efficiency of 7.16%. This new structural heterostructured CdS buffer layer can regulate Sb2Se3nanoribbons crystal growth and pave the way to further improve the low‐dimensional chalcogenide thin film solar cell efficiency.

     
    more » « less
  2.  
    more » « less
  3. The antimony selenide (Sb2Se3) thin film solar cells technology become promising due to its excellent anisotropic charge transport and brilliant light absorption capability. Especially, the device performance heavily relies on the vertically oriented Sb2Se3 grain to promote photoexcited carrier transport. However, crystalline orientation control has been a major issue in Sb2Se3 thin film solar cells. In this work, a new strategy has been developed to tailor the crystal growth of Sb2Se3 ribbons perpendicular to the substrate by using the structural heterostructured CdS buffer layer. The heterostructured CdS buffer layer was formed by a dual layer of CdS nanorods and nanoparticles. The hexagonal CdS nanorods passivated by a thin cubic CdS nanoparticle layer can promote [211] and [221] directional growth of Sb2Se3 ribbons using a close space sublimation approach. The improved buffer/absorber interface, reduced interface defects, and recombination loss contribute to the improved device efficiency of 7.16%. This new structural heterostructured CdS buffer layer can regulate Sb2Se3 nanoribbons crystal growth and pave the way to further improve the low-dimensional chalcogenide thin film solar cell efficiency. 
    more » « less
  4.  
    more » « less
  5. In this work, we explore inverse designed reconfigurable digital metamaterial structures based on phase change material Sb2Se3for efficient and compact integrated nanophotonics. An exemplary design of a 1 × 2 optical switch consisting of a 3 µm x 3 µm pixelated domain is demonstrated. We show that: (i) direct optimization of a domain containing only Si and Sb2Se3pixels does not lead to a high extinction ratio between output ports in the amorphous state, which is owed to the small index contrast between Si and Sb2Se3in such a state. As a result, (ii) topology optimization, e.g., the addition of air pixels, is required to provide an initial asymmetry that aids the amorphous state's response. Furthermore, (iii) the combination of low loss and high refractive index change in Sb2Se3, which is unique among all phase change materials in the telecommunications 1550 nm band, translates into an excellent projected performance; the optimized device structure exhibits a low insertion loss (∼1.5 dB) and high extinction ratio (>18 dB) for both phase states.

     
    more » « less