skip to main content


Title: 100 pT/cm single-point MEMS magnetic gradiometer from a commercial accelerometer
Abstract Magnetic sensing is present in our everyday interactions with consumer electronics and demonstrates the potential for the measurement of extremely weak biomagnetic fields, such as those of the heart and brain. In this work, we leverage the many benefits of microelectromechanical system (MEMS) devices to fabricate a small, low-power, and inexpensive sensor whose resolution is in the range of biomagnetic fields. At present, biomagnetic fields are measured only by expensive mechanisms such as optical pumping and superconducting quantum interference devices (SQUIDs), suggesting a large opportunity for MEMS technology in this work. The prototype fabrication is achieved by assembling micro-objects, including a permanent micromagnet, onto a postrelease commercial MEMS accelerometer using a pick-and-place technique. With this system, we demonstrate a room-temperature MEMS magnetic gradiometer. In air, the sensor’s response is linear, with a resolution of 1.1 nT cm −1 , spans over 3 decades of dynamic range to 4.6 µT cm −1 , and is capable of off-resonance measurements at low frequencies. In a 1 mTorr vacuum with 20 dB magnetic shielding, the sensor achieves a 100 pT cm −1 resolution at resonance. This resolution represents a 30-fold improvement compared with that of MEMS magnetometer technology and a 1000-fold improvement compared with that of MEMS gradiometer technology. The sensor is capable of a small spatial resolution with a magnetic sensing element of 0.25 mm along its sensitive axis, a >4-fold improvement compared with that of MEMS gradiometer technology. The calculated noise floor of this platform is 110 fT cm −1  Hz −1/2 , and thus, these devices hold promise for both magnetocardiography (MCG) and magnetoencephalography (MEG) applications.  more » « less
Award ID(s):
1647837
NSF-PAR ID:
10331897
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Microsystems & Nanoengineering
Volume:
6
Issue:
1
ISSN:
2055-7434
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this work, we present a battery-less wireless Micro-Electro-Mechanical (MEMS)-based respiration sensor capable of measuring the respiration profile of a human subject from up to 2 m distance from the transceiver unit for a mean excitation power of 80 µW and a measured SNR of 124.8 dB at 0.5 m measurement distance. The sensor with a footprint of ~10 cm2 is designed to be inexpensive, maximize user mobility, and cater to applications where disposability is desirable to minimize the sanitation burden. The sensing system is composed of a custom UHF RFID antenna, a low-loss piezoelectric MEMS resonator with two modes within the frequency range of interest, and a base transceiver unit. The difference in temperature and moisture content of inhaled and exhaled air modulates the resonance frequency of the MEMS resonator which in turn is used to monitor respiration. To detect changes in the resonance frequency of the MEMS devices, the sensor is excited by a pulsed sinusoidal signal received through an external antenna directly coupled to the device. The signal reflected from the device through the antenna is then analyzed via Fast Fourier Transform (FFT) to extract and monitor the resonance frequency of the resonator. By tracking the resonance frequency over time, the respiration profile of a patient is tracked. A compensation method for the removal of motion-induced artifacts and drift is proposed and implemented using the difference in the resonance frequency of two resonance modes of the same resonator. 
    more » « less
  2. Abstract

    The Casimir force, a quantum mechanical effect, has been observed in several microelectromechanical system (MEMS) platforms. Due to its extreme sensitivity to the separation of two objects, the Casimir force has been proposed as an excellent avenue for quantum metrology. Practical application, however, is challenging due to attractive forces leading to stiction and device failure, called Casimir pull-in. In this work, we design and simulate a Casimir-driven metrology platform, where a time-delay-based parametric amplification technique is developed to achieve a steady-state and avoid pull-in. We apply the design to the detection of weak, low-frequency, gradient magnetic fields similar to those emanating from ionic currents in the heart and brain. Simulation parameters are selected from recent experimental platforms developed for Casimir metrology and magnetic gradiometry, both on MEMS platforms. While a MEMS offers many advantages to such an application, the detected signal must typically be at the resonant frequency of the device, with diminished sensitivity in the low frequency regime of biomagnetic fields. Using a Casimir-driven parametric amplifier, we report a 10,000-fold improvement in the best-case resolution of MEMS single-point gradiometers, with a maximum sensitivity of 6 Hz/(pT/cm) at 1 Hz. Further development of the proposed design has the potential to revolutionize metrology and may specifically enable the unshielded monitoring of biomagnetic fields in ambient conditions.

     
    more » « less
  3. Polymer nanocomposites have been sought after for their light weight, high performance (strength-to-mass ratio, renewability, etc.), and multi-functionality (actuation, sensing, protection against lightning strikes, etc.). Nano-/micro-engineering has achieved such advanced properties by controlling crystallinity, phases, and interfaces/interphases; hierarchical structuring, often bio-inspired, has been also implemented. While driven by the advanced properties of nanofillers, properties of polymer nanocomposites are critically affected by their structuring and interfaces/interphases due to their small size (< ~50 nm) and large surface area per volume. Measures of their property improvement by nanofiller addition are often smaller than theoretically predicted. Currently, application of these novel engineered materials is limited because these materials cannot often be made in large sizes without compromising nano-scale organization, and because their multi-scale structure-property relationships are not well understood. In this work, we study precise and fast nanofiller structuring with non-contact and energy-efficient application of oscillating magnetic fields. Magnetic assembly is a promising, scalable method to deliver bulk amount of nanocomposites while maintaining organized nanofiller structure throughout the composite volume. In the past, we have demonstrated controlled alignment of nanofillers with tunable inter-assembly distances with application of oscillating one-dimentional magnetic fields (~100s of G), by taking advantage of both magnetic attraction and repulsion. The low oscillation frequency (< 1 Hz) was tuned to achieve maghemite nanofiller alignment patterns, in an epoxy matrix, with different amount of inter-nanofiller contacts with the same nanofiller volume fraction (see Figure 1a). This work was recently expanded to three-dimensional assembly using a triaxial Helmholtz coil system (see Figure 1b); the system can apply the triaxial magnetic fields of varying magnitude (max. ±300G, ±250G, ±180G (x-y-z)) and frequency (0 to 1 Hz, ~0.1 Hz resolution) with controlled phase delay to the sample size of 1.5” x 2.5” x 3.5”(x-y-z). Two model systems are currently studied: maghemite nanofillers in an elastomer for magnetoactuation, and nickel-coated CNTs in an thermoset for mehcniacl and transport property reinforcement. The assembled nanofiller structures are currently characterized by microCT; microCT scan data (see Figure 1b) are segmented through a machine learning algorithm, and will be modeled for their transport properties using a Monte Carlo method. These estimated properties will be compared with the experimentally characterized mechanical, transport, and actuation properties, providing the structure-interphase-property relationships. In future, we plan to integrate these nanocomposites to CFRPs for interlaminar property reinforcement, possibly with an out-of-autoclave composite processing. 
    more » « less
  4. Batteryless image sensors present an opportunity for long-life, long-range sensor deployments that require zero maintenance, and have low cost. Such deployments are critical for enabling remote sensing applications, e.g., instrumenting national highways, where individual devices are deployed far (kms away) from supporting infrastructure. In this work, we develop and characterize Camaroptera, the first batteryless image-sensing platform to combine energy-harvesting with active, long-range (LoRa) communication. We also equip Camaroptera with a Machine Learning-based processing pipeline to mitigate costly, long-distance communication of image data. This processing pipeline filters out uninteresting images and only transmits the images interesting to the application. We show that compared to running a traditional Sense-and-Send workload, Camaroptera’s Local Inference pipeline captures and sends upto \( 12\times \) more images of interest to an application. By performing Local Inference , Camaroptera also sends upto \( 6.5\times \) fewer uninteresting images, instead using that energy to capture upto \( 14.7\times \) more new images, increasing its sensing effectiveness and availability. We fully prototype the Camaroptera hardware platform in a compact, 2 cm \( \times \) 3 cm \( \times \) 5 cm volume. Our evaluation demonstrates the viability of a batteryless, remote, visual-sensing platform in a small package that collects and usefully processes acquired data and transmits it over long distances (kms), while being deployed for multiple decades with zero maintenance. 
    more » « less
  5. null (Ed.)
    This work presents the design, modeling, and fabrication of a whisker-like sensor capable of measuring the whisker's angular displacement as well as the applied moments at the base of the whisker. The sensor takes advantage of readily accessible and low-cost 3D magnetic sensors to transduce whisker deflections, and a planar serpentine spring structure at the whisker base is used to provide a mechanical suspension for the whisker to rotate. The sensor prototype was characterized, calibrated, and compared with analytical models of the spring system and the magnetic field. The prototype showed a moment sensing range of 1.1N·mm when deflected up to 19.7°. The sensitivity of the sensor was 0.38°/LSB for the angular displacement sensing, and 0.021 Nmm/LSB for the moment sensing. A fully integrated system is demonstrated to display real-time information from the whisker on a graphical interface. 
    more » « less