skip to main content


Title: 100 pT/cm single-point MEMS magnetic gradiometer from a commercial accelerometer
Abstract Magnetic sensing is present in our everyday interactions with consumer electronics and demonstrates the potential for the measurement of extremely weak biomagnetic fields, such as those of the heart and brain. In this work, we leverage the many benefits of microelectromechanical system (MEMS) devices to fabricate a small, low-power, and inexpensive sensor whose resolution is in the range of biomagnetic fields. At present, biomagnetic fields are measured only by expensive mechanisms such as optical pumping and superconducting quantum interference devices (SQUIDs), suggesting a large opportunity for MEMS technology in this work. The prototype fabrication is achieved by assembling micro-objects, including a permanent micromagnet, onto a postrelease commercial MEMS accelerometer using a pick-and-place technique. With this system, we demonstrate a room-temperature MEMS magnetic gradiometer. In air, the sensor’s response is linear, with a resolution of 1.1 nT cm −1 , spans over 3 decades of dynamic range to 4.6 µT cm −1 , and is capable of off-resonance measurements at low frequencies. In a 1 mTorr vacuum with 20 dB magnetic shielding, the sensor achieves a 100 pT cm −1 resolution at resonance. This resolution represents a 30-fold improvement compared with that of MEMS magnetometer technology and a 1000-fold improvement compared with that of MEMS gradiometer technology. The sensor is capable of a small spatial resolution with a magnetic sensing element of 0.25 mm along its sensitive axis, a >4-fold improvement compared with that of MEMS gradiometer technology. The calculated noise floor of this platform is 110 fT cm −1  Hz −1/2 , and thus, these devices hold promise for both magnetocardiography (MCG) and magnetoencephalography (MEG) applications.  more » « less
Award ID(s):
1647837
PAR ID:
10331897
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Microsystems & Nanoengineering
Volume:
6
Issue:
1
ISSN:
2055-7434
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The Casimir force, a quantum mechanical effect, has been observed in several microelectromechanical system (MEMS) platforms. Due to its extreme sensitivity to the separation of two objects, the Casimir force has been proposed as an excellent avenue for quantum metrology. Practical application, however, is challenging due to attractive forces leading to stiction and device failure, called Casimir pull-in. In this work, we design and simulate a Casimir-driven metrology platform, where a time-delay-based parametric amplification technique is developed to achieve a steady-state and avoid pull-in. We apply the design to the detection of weak, low-frequency, gradient magnetic fields similar to those emanating from ionic currents in the heart and brain. Simulation parameters are selected from recent experimental platforms developed for Casimir metrology and magnetic gradiometry, both on MEMS platforms. While a MEMS offers many advantages to such an application, the detected signal must typically be at the resonant frequency of the device, with diminished sensitivity in the low frequency regime of biomagnetic fields. Using a Casimir-driven parametric amplifier, we report a 10,000-fold improvement in the best-case resolution of MEMS single-point gradiometers, with a maximum sensitivity of 6 Hz/(pT/cm) at 1 Hz. Further development of the proposed design has the potential to revolutionize metrology and may specifically enable the unshielded monitoring of biomagnetic fields in ambient conditions.

     
    more » « less
  2. In this work, we present a battery-less wireless Micro-Electro-Mechanical (MEMS)-based respiration sensor capable of measuring the respiration profile of a human subject from up to 2 m distance from the transceiver unit for a mean excitation power of 80 µW and a measured SNR of 124.8 dB at 0.5 m measurement distance. The sensor with a footprint of ~10 cm2 is designed to be inexpensive, maximize user mobility, and cater to applications where disposability is desirable to minimize the sanitation burden. The sensing system is composed of a custom UHF RFID antenna, a low-loss piezoelectric MEMS resonator with two modes within the frequency range of interest, and a base transceiver unit. The difference in temperature and moisture content of inhaled and exhaled air modulates the resonance frequency of the MEMS resonator which in turn is used to monitor respiration. To detect changes in the resonance frequency of the MEMS devices, the sensor is excited by a pulsed sinusoidal signal received through an external antenna directly coupled to the device. The signal reflected from the device through the antenna is then analyzed via Fast Fourier Transform (FFT) to extract and monitor the resonance frequency of the resonator. By tracking the resonance frequency over time, the respiration profile of a patient is tracked. A compensation method for the removal of motion-induced artifacts and drift is proposed and implemented using the difference in the resonance frequency of two resonance modes of the same resonator. 
    more » « less
  3. MEMS resonators integrated with CMOS feedback networks have a potentially wide field of applications as oscillator circuits in communications and sensor systems. However, considerable advancements to this nascent technology are required to realize such a vision. We present a configurable CMOS chip which facilitates the development of MEMS-referenced oscillators, especially for timing and sensing applications in harsh environments. The chip has been designed in the OnSemi 3M2P 0.5 um process. It supports MEMS resonators with various frequencies (10–120 kHz), resonant modes, and impedance levels, thus allowing interfacing to a wide range of devices. This paper describes analysis, design, and simulation results. 
    more » « less
  4. Continuous monitoring of biochemical information is critical for health management. Hydrogel, a synthetic material that exhibits volumetric response to target stimuli, is an attractive material for such applications. However, wireless readout of the hydrogel's response over a longer distance, while maintaining the small sensor dimension has been challenging. In this work we present ferrogel-based wireless acousto-biochemical sensing system with small dimension (length: 7.5 mm, diameter: 2 mm) and long sensing distance (>10 cm). The sensor utilizes ferromagnetic hydrogel to convert pH to the change in resonance frequency; the wireless measurement is made through the RF signal emission under ultrasonic excitation. 
    more » « less
  5. null (Ed.)
    The goal of this paper is to provide a novel computing approach that can be used to reduce the power consumption, size, and cost of wearable electronics. To achieve this goal, the use of microelectromechanical systems (MEMS) sensors for simultaneous sensing and computing is introduced. Specifically, by enabling sensing and computing locally at the MEMS sensor node and utilizing the usually unwanted pull in/out hysteresis, we may eliminate the need for cloud computing and reduce the use of analog-to-digital converters, sampling circuits, and digital processors. As a proof of concept, we show that a simulation model of a network of three commercially available MEMS accelerometers can classify a train of square and triangular acceleration signals inherently using pull-in and release hysteresis. Furthermore, we develop and fabricate a network with finger arrays of parallel plate actuators to facilitate coupling between MEMS devices in the network using actuating assemblies and biasing assemblies, thus bypassing the previously reported coupling challenge in MEMS neural networks. 
    more » « less