skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Hysteresis LOOP Studies Of Magnetic TunnelJunction-basedMolecular Spintronics Devices (mtjmsd) Employing Monte Carlo Simulations
The hysteresis loop investigations of different size magnetic tunnel junction molecular spintronics devices (MTJMSD) have been done by Monte Carlo simulation (MCS). We employed a continuous MCS algorithm to investigate single-molecule magnet SMM’s spin state’s impact as a function of molecular exchange coupling strength. The applied magnetic fields were ramped at a variety of ranges of increments, unfolding physics behind the magnetization nature of each MTJMSD. The magnetic moment changes with applied magnetic fields exhibit the characteristics of devices being studied. The MTJMSDs were studied for ferromagnetic and antiferromagnetic exchange couplings. The magnetic moment saturation, retentivity, coercivity, and permeability are studied.  more » « less
Award ID(s):
1914751
PAR ID:
10332049
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
2021 IEEE 21st International Conference on Nanotechnology (NANO)
Page Range / eLocation ID:
337 to 340
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. With a variable spin state, paramagnetic molecules can affect the impact of magnetic exchange coupling strength between two ferromagnetic electrodes. Our magnetic tunnel junction based molecular spintronics devices (MTJMSD) were successful in connecting paramagnetic single molecular magnet (SMM) between two ferromagnetic electrodes. Isolated SMM exhibited a wide range of spin states. However, it was extremely challenging to identify the SMM spin state when connected to the ferromagnetic electrodes. Our prior experimental and Monte Carlo Simulations (MCS) studies showed that paramagnetic molecules produced unprecedented strong antiferromagnetic coupling between two ferromagnets at room temperature. The overall antiferromagnetic coupling occurred when a paramagnetic SMM made antiferromagnetic coupling to the first electrode and ferromagnetic coupling to the second ferromagnetic electrode. This paper studies the impact of variable molecular spin states of the SMMs, producing strong antiferromagnetic coupling between the ferromagnetic electrodes of MTJMSD. The MTJMSD used in this study was represented by an 11 x 50 x 50 Ising model, with 11 being the thickness of the MTJMSD and 5 x 10 x 50 being each electrode’s size. We employed a continuous MCS algorithm to investigate SMM’s spin state’s impact as a function of molecular exchange coupling strength and thermal energy. 
    more » « less
  2. The intra-molecular coupling within multiple units of paramagnetic molecules can produce various effects on molecular spintronics devices (MSD). The effect of the nature of the strong magnetic coupling between a multi-segmented molecule with two ferromagnetic (FM) electrodes is unexplored. Such knowledge is of critical importance for magnetic tunnel junction-based molecular spintronics devices (MTJMSD). MTJMSD architecture experimentally allows very strong bonding between complex molecules and ferromagnetic electrodes. In our prior studies, we have extensively studied the atomic analog of the single molecular magnet. That means whole molecular geometry and internal features were approximated to appear as one atom representing that molecule. To advance the understanding of the impact of internal molecular structure on MTJMSD, we have focused on multi-segmented molecules. This research aims to fill the knowledge gap about the intramolecular coupling role in the magnetic properties of the MTJMSD. This study explored a double-segmented molecule containing two atomic sections, each with a net spin state and interacting via Heisenberg exchange coupling within molecules and with ferromagnetic electrodes. The effect of thermal energy was explored on the impact of intra-molecular coupling on the MTJMSD Heisenberg model. We performed Monte Carlo simulations(MCS) to study various possibilities in the strong molecule-ferromagnet coupling regime. This research provides insights into the influence of complex molecules on MSD that can be employed in futuristic computers and novel magnetic meta-materials. 
    more » « less
  3. Spatial Impact Range of Single-Molecule Magnet (SMM) on Magnetic Tunnel Junction-Based Molecular Spintronic Devices (MTJMSDs) Marzieh Savadkoohi, Bishnu R Dahal, Eva Mutunga, Andrew Grizzle, Christopher D’Angelo, and Pawan Tyagi Magnetic Tunnel Junction-Based Molecular Spintronic Devices (MTJMSDs) are potential candidates for inventing highly correlated materials and devices. However, a knowledge gap exists about the impact of variation in length and thickness of ferromagnetic(FM) electrodes on molecular spintronics devices. This paper reports our experimental observations providing the dramatic impact of variation in ferromagnetic electrode length and thickness on paramagnetic molecule-based MTJMSD. Room temperature transport studies were performed to investigate the effect of FM electrode thickness. On the other hand, magnetic force microscopy measurements were conducted to understand the effect of FM electrode length extending beyond the molecular junction area, i.e., the site where paramagnetic molecules bridged between two FM. In the strong molecular coupling regime, transport study suggested thickness variation caused ~1000 to million-fold differences in junction conductivity. MFM study revealed near-zero magnetic contrast for pillar-shaped MTJMSD without any extended FM electrode. However, MFM images showed a multitude of microscopic magnetic phases on cross junction shaped MTJMSD where FM electrodes extended beyond the junction area. To understand the intriguing experimental results, we conducted an in-depth theoretical study using Monte Carlo Simulation (MCS) approach. MCS study utilized a Heisenberg atomic model of cross junction shaped MTJMSD to gain insights about room temperature transport and MFM experimental observations of microscopic MTJMSD. To make this study applicable for a wide variety of MTJMSDs, we systematically studied the effect of variation in molecular coupling strength between magnetic molecules and ferromagnetic (FM) electrodes of various dimensions. 
    more » « less
  4. The intra-molecular coupling within multiple units of paramagnetic molecules can produce various effects on molecular spintronics devices (MSD). This paper focuses on double-segmented molecules as the device element to advance understanding of the Impact of internal molecular structure on magnetic tunnel junction-based MSD (MTJMSD). We performed Monte Carlo simulations (MCS) to fill the knowledge gap about the intramolecular coupling role in the magnetic properties of the MTJMSD. This study explored a double-segmented molecule containing two atomic sections, each with a net spin state interacting via Heisenberg exchange coupling within molecules and with ferromagnetic electrodes at different thermal energies, magnetic fields, and coupling strengths. This study also investigated the effect of magnetic field on the double-segmented molecule-based cross-junction-shaped MTJMSD. We also compared the effect of the magnetic field on the mono and double-segmented molecules when connected to two ferromagnetic electrodes. In the strong coupling regime, the intramolecular coupling and molecule coupling with the two ferromagnetic electrodes dominated the MTJMSD response near the molecular junction area. This study provides insight for evaluating the Impact of molecular nanostructure internal connectedness on the integrated MSD. 
    more » « less
  5. Abstract Magnetic tunnel junction-based molecular spintronics device (MTJMSD) may enable novel magnetic metamaterials by chemically bonding magnetic molecules and ferromagnets (FM) with a vast range of magnetic anisotropy. MTJMSD have experimentally shown intriguing microscopic phenomenon such as the development of highly contrasting magnetic phases on a ferromagnetic electrode at room temperature. This paper focuses on Monte Carlo Simulations (MCS) on MTJMSD to understand the potential mechanism and explore fundamental knowledge about the impact of magnetic anisotropy. The selection of MCS is based on our prior study showing the potential of MCS in explaining experimental results (Tyagi et al. in Nanotechnology 26:305602, 2015). In this paper, MCS is carried out on the 3D Heisenberg model of cross-junction-shaped MTJMSDs. Our research represents the experimentally studied cross-junction-shaped MTJMSD where paramagnetic molecules are covalently bonded between two FM electrodes along the exposed side edges of the magnetic tunnel junction (MTJ). We have studied atomistic MTJMSDs properties by simulating a wide range of easy-axis anisotropy for the case of experimentally observed predominant molecule-induced strong antiferromagnetic coupling. Our study focused on understanding the effect of anisotropy of the FM electrodes on the overall MTJMSDs at various temperatures. This study shows that the multiple domains of opposite spins start to appear on an FM electrode as the easy-axis anisotropy increases. Interestingly, MCS results resembled the experimentally observed highly contrasted magnetic zones on the ferromagnetic electrodes of MTJMSD. The magnetic phases with starkly different spins were observed around the molecular junction on the FM electrode with high anisotropy. 
    more » « less