skip to main content

Title: Spin state of a single-molecule magnet (SMM) creating long-range ordering on ferromagnetic layers of a magnetic tunnel junction – a Monte Carlo study
Paramagnetic single-molecule magnets (SMMs) interacting with the ferromagnetic electrodes of a magnetic tunnel junction (MTJ) produce a new system. The properties and future scope of new systems differ dramatically from the properties of isolated molecules and ferromagnets. However, it is unknown how far deep in the ferromagnetic electrode the impact of the paramagnetic molecule and ferromagnet interactions can travel for various levels of molecular spin states. Our prior experimental studies showed two types of paramagnetic SMMs, the hexanuclear Mn 6 and octanuclear Fe–Ni molecular complexes, covalently bonded to ferromagnets produced unprecedented strong antiferromagnetic coupling between two ferromagnets at room temperature leading to a number of intriguing observations (P. Tyagi, et al. , Org. Electron. , 2019, 64 , 188–194. P. Tyagi, et al. , RSC Adv. , 2020, 10 , (22), 13006–13015). This paper reports a Monte Carlo Simulations (MCS) study focusing on the impact of the molecular spin state on a cross junction shaped MTJ based molecular spintronics device (MTJMSD). Our MCS study focused on the Heisenberg model of MTJMSD and investigated the impact of various molecular coupling strengths, thermal energy, and molecular spin states. To gauge the impact of the molecular spin state on the region of ferromagnetic more » electrodes, we examined the spatial distribution of molecule-ferromagnet correlated phases. Our MCS study shows that under a strong coupling regime, the molecular spin state should be ∼30% of the ferromagnetic electrode's atomic spins to create long-range correlated phases. « less
Authors:
; ; ;
Award ID(s):
1914751
Publication Date:
NSF-PAR ID:
10332214
Journal Name:
RSC Advances
Volume:
11
Issue:
51
Page Range or eLocation-ID:
32275 to 32285
ISSN:
2046-2069
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Magnetic tunnel junction-based molecular spintronics device (MTJMSD) may enable novel magnetic metamaterials by chemically bonding magnetic molecules and ferromagnets (FM) with a vast range of magnetic anisotropy. MTJMSD have experimentally shown intriguing microscopic phenomenon such as the development of highly contrasting magnetic phases on a ferromagnetic electrode at room temperature. This paper focuses on Monte Carlo Simulations (MCS) on MTJMSD to understand the potential mechanism and explore fundamental knowledge about the impact of magnetic anisotropy. The selection of MCS is based on our prior study showing the potential of MCS in explaining experimental results (Tyagi et al. in Nanotechnology 26:305602, 2015). In this paper, MCS is carried out on the 3D Heisenberg model of cross-junction-shaped MTJMSDs. Our research represents the experimentally studied cross-junction-shaped MTJMSD where paramagnetic molecules are covalently bonded between two FM electrodes along the exposed side edges of the magnetic tunnel junction (MTJ). We have studied atomistic MTJMSDs properties by simulating a wide range of easy-axis anisotropy for the case of experimentally observed predominant molecule-induced strong antiferromagnetic coupling. Our study focused on understanding the effect of anisotropy of the FM electrodes on the overall MTJMSDs at various temperatures. This study shows that the multiple domains of oppositemore »spins start to appear on an FM electrode as the easy-axis anisotropy increases. Interestingly, MCS results resembled the experimentally observed highly contrasted magnetic zones on the ferromagnetic electrodes of MTJMSD. The magnetic phases with starkly different spins were observed around the molecular junction on the FM electrode with high anisotropy.

    « less
  2. Spatial Impact Range of Single-Molecule Magnet (SMM) on Magnetic Tunnel Junction-Based Molecular Spintronic Devices (MTJMSDs) Marzieh Savadkoohi, Bishnu R Dahal, Eva Mutunga, Andrew Grizzle, Christopher D’Angelo, and Pawan Tyagi Magnetic Tunnel Junction-Based Molecular Spintronic Devices (MTJMSDs) are potential candidates for inventing highly correlated materials and devices. However, a knowledge gap exists about the impact of variation in length and thickness of ferromagnetic(FM) electrodes on molecular spintronics devices. This paper reports our experimental observations providing the dramatic impact of variation in ferromagnetic electrode length and thickness on paramagnetic molecule-based MTJMSD. Room temperature transport studies were performed to investigate the effect of FM electrode thickness. On the other hand, magnetic force microscopy measurements were conducted to understand the effect of FM electrode length extending beyond the molecular junction area, i.e., the site where paramagnetic molecules bridged between two FM. In the strong molecular coupling regime, transport study suggested thickness variation caused ~1000 to million-fold differences in junction conductivity. MFM study revealed near-zero magnetic contrast for pillar-shaped MTJMSD without any extended FM electrode. However, MFM images showed a multitude of microscopic magnetic phases on cross junction shaped MTJMSD where FM electrodes extended beyond the junction area. To understand the intriguing experimental results, wemore »conducted an in-depth theoretical study using Monte Carlo Simulation (MCS) approach. MCS study utilized a Heisenberg atomic model of cross junction shaped MTJMSD to gain insights about room temperature transport and MFM experimental observations of microscopic MTJMSD. To make this study applicable for a wide variety of MTJMSDs, we systematically studied the effect of variation in molecular coupling strength between magnetic molecules and ferromagnetic (FM) electrodes of various dimensions.« less
  3. "Magnetic tunnel junction-based molecular spintronics devices (MTJMSDs) are designed by covalently connecting the paramagnetic molecules across two ferromagnets (FM) electrodes of a magnetic tunnel junction (MTJ). MTJMSD provides opportunities to connect FM electrodes of a vast range of anisotropy properties to a variety of molecules of length scale. Our prior studies showed that the paramagnetic molecules can produce strong antiferromagnetic coupling with FM electrodes. The device properties of MTJMSD depend upon various factors such as anisotropy, various couplings, spin fluctuation, thermal energy, device size, etc. Here, we report a theoretical Monte Carlo Simulation (MCS) study to explain the impact of anisotropy on the MTJMSD equilibrium properties. We studied the magnetic properties of MTJMSDs when in-plane and out-of-plane anisotropies acted simultaneously and together on one of its ferromagnetic electrodes. In-plane anisotropy causes multiple magnetic phases of opposite spins. The multiple magnetic phases vanished at higher thermal energy. The device still maintained higher magnetic moment because of anisotropy. The out-of-plane anisotropy caused a dominant magnetic phase in an electrode rather than multiple magnetic phases. The simultaneous in-plane and out-of-plane anisotropies on the same electorate negated the anisotropy effect. The study of the competing effect of anisotropies opens the insight into experimental observationsmore »of MTJMSD studies."« less
  4. The intra-molecular coupling within multiple units of paramagnetic molecules can produce various effects on molecular spintronics devices (MSD). The effect of the nature of the strong magnetic coupling between a multi-segmented molecule with two ferromagnetic (FM) electrodes is unexplored. Such knowledge is of critical importance for magnetic tunnel junction-based molecular spintronics devices (MTJMSD). MTJMSD architecture experimentally allows very strong bonding between complex molecules and ferromagnetic electrodes. In our prior studies, we have extensively studied the atomic analog of the single molecular magnet. That means whole molecular geometry and internal features were approximated to appear as one atom representing that molecule. To advance the understanding of the impact of internal molecular structure on MTJMSD, we have focused on multi-segmented molecules. This research aims to fill the knowledge gap about the intramolecular coupling role in the magnetic properties of the MTJMSD. This study explored a double-segmented molecule containing two atomic sections, each with a net spin state and interacting via Heisenberg exchange coupling within molecules and with ferromagnetic electrodes. The effect of thermal energy was explored on the impact of intra-molecular coupling on the MTJMSD Heisenberg model. We performed Monte Carlo simulations(MCS) to study various possibilities in the strong molecule-ferromagnet coupling regime.more »This research provides insights into the influence of complex molecules on MSD that can be employed in futuristic computers and novel magnetic meta-materials.« less
  5. Magnetic tunnel junction (MTJ) can serve as an excellent testbed for connecting Molecule between two ferromagnetic electrodes. A paramagnetic molecule covalently bonded to two ferromagnetic electrodes with two thiol functional groups can produce intriguing transport and magnetic properties. We have chemically bonded paramagnetic molecules between two ferromagnetic electrodes of a MTJ along the exposed side edges. In this paper we discussed the observation of Molecule induced dramatic changes in the magnetic and transport properties of the conventional magnetic tunnel junctions. Paramagnetic molecules were chemically bonded to ferromagnetic electrodes to bridge them across the insulating spacer along the exposed edges. Paramagnetic molecular channels along the tunnel junction edges decreased the overall current, through tunnel barrier and molecular channels, > 5 orders of magnitude below the leakage current of the bare tunnel junction at room temperature. These molecules caused significant changes in the spin density of states due to potential spin filtering effect. Also, paramagnetic molecules produced antiferromagnetic coupling between the affected magnetic electrodes. In this state spin transport in the magnetic tunnel junction based molecular devices plummeted by several orders. It is also noteworthy that our experimental studies provide a platform to connect a vast variety of ferromagnetic leads to themore »even broader array of high potential molecules such as single molecular magnets, porphyrin, and single ion molecules. The strength of exchange coupling between ferromagnetic electrodes and molecules can be tailored by utilizing different tethers and terminal functional groups. The MTJMSD can provide an advanced form of logic and memory devices, including a testbed for the Molecule based quantum computation devices. Future study about the interaction between molecular magnets and ferromagnets and interaction of thiol ended alkanes with ferromagnets will be of very valuable. This study indicates the potential of magnetic molecules as a mean to transforming conventional magnetic tunnel junctions and producing unprecedented magnetic and transport properties.« less