With a variable spin state, paramagnetic molecules can affect the impact of magnetic exchange coupling strength between two ferromagnetic electrodes. Our magnetic tunnel junction based molecular spintronics devices (MTJMSD) were successful in connecting paramagnetic single molecular magnet (SMM) between two ferromagnetic electrodes. Isolated SMM exhibited a wide range of spin states. However, it was extremely challenging to identify the SMM spin state when connected to the ferromagnetic electrodes. Our prior experimental and Monte Carlo Simulations (MCS) studies showed that paramagnetic molecules produced unprecedented strong antiferromagnetic coupling between two ferromagnets at room temperature. The overall antiferromagnetic coupling occurred when a paramagnetic SMM made antiferromagnetic coupling to the first electrode and ferromagnetic coupling to the second ferromagnetic electrode. This paper studies the impact of variable molecular spin states of the SMMs, producing strong antiferromagnetic coupling between the ferromagnetic electrodes of MTJMSD. The MTJMSD used in this study was represented by an 11 x 50 x 50 Ising model, with 11 being the thickness of the MTJMSD and 5 x 10 x 50 being each electrode’s size. We employed a continuous MCS algorithm to investigate SMM’s spin state’s impact as a function of molecular exchange coupling strength and thermal energy. 
                        more » 
                        « less   
                    
                            
                            Spin state of a single-molecule magnet (SMM) creating long-range ordering on ferromagnetic layers of a magnetic tunnel junction – a Monte Carlo study
                        
                    
    
            Paramagnetic single-molecule magnets (SMMs) interacting with the ferromagnetic electrodes of a magnetic tunnel junction (MTJ) produce a new system. The properties and future scope of new systems differ dramatically from the properties of isolated molecules and ferromagnets. However, it is unknown how far deep in the ferromagnetic electrode the impact of the paramagnetic molecule and ferromagnet interactions can travel for various levels of molecular spin states. Our prior experimental studies showed two types of paramagnetic SMMs, the hexanuclear Mn 6 and octanuclear Fe–Ni molecular complexes, covalently bonded to ferromagnets produced unprecedented strong antiferromagnetic coupling between two ferromagnets at room temperature leading to a number of intriguing observations (P. Tyagi, et al. , Org. Electron. , 2019, 64 , 188–194. P. Tyagi, et al. , RSC Adv. , 2020, 10 , (22), 13006–13015). This paper reports a Monte Carlo Simulations (MCS) study focusing on the impact of the molecular spin state on a cross junction shaped MTJ based molecular spintronics device (MTJMSD). Our MCS study focused on the Heisenberg model of MTJMSD and investigated the impact of various molecular coupling strengths, thermal energy, and molecular spin states. To gauge the impact of the molecular spin state on the region of ferromagnetic electrodes, we examined the spatial distribution of molecule-ferromagnet correlated phases. Our MCS study shows that under a strong coupling regime, the molecular spin state should be ∼30% of the ferromagnetic electrode's atomic spins to create long-range correlated phases. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1914751
- PAR ID:
- 10332214
- Date Published:
- Journal Name:
- RSC Advances
- Volume:
- 11
- Issue:
- 51
- ISSN:
- 2046-2069
- Page Range / eLocation ID:
- 32275 to 32285
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Magnetic tunnel junction-based molecular spintronics device (MTJMSD) may enable novel magnetic metamaterials by chemically bonding magnetic molecules and ferromagnets (FM) with a vast range of magnetic anisotropy. MTJMSD have experimentally shown intriguing microscopic phenomenon such as the development of highly contrasting magnetic phases on a ferromagnetic electrode at room temperature. This paper focuses on Monte Carlo Simulations (MCS) on MTJMSD to understand the potential mechanism and explore fundamental knowledge about the impact of magnetic anisotropy. The selection of MCS is based on our prior study showing the potential of MCS in explaining experimental results (Tyagi et al. in Nanotechnology 26:305602, 2015). In this paper, MCS is carried out on the 3D Heisenberg model of cross-junction-shaped MTJMSDs. Our research represents the experimentally studied cross-junction-shaped MTJMSD where paramagnetic molecules are covalently bonded between two FM electrodes along the exposed side edges of the magnetic tunnel junction (MTJ). We have studied atomistic MTJMSDs properties by simulating a wide range of easy-axis anisotropy for the case of experimentally observed predominant molecule-induced strong antiferromagnetic coupling. Our study focused on understanding the effect of anisotropy of the FM electrodes on the overall MTJMSDs at various temperatures. This study shows that the multiple domains of opposite spins start to appear on an FM electrode as the easy-axis anisotropy increases. Interestingly, MCS results resembled the experimentally observed highly contrasted magnetic zones on the ferromagnetic electrodes of MTJMSD. The magnetic phases with starkly different spins were observed around the molecular junction on the FM electrode with high anisotropy.more » « less
- 
            Spatial Impact Range of Single-Molecule Magnet (SMM) on Magnetic Tunnel Junction-Based Molecular Spintronic Devices (MTJMSDs) Marzieh Savadkoohi, Bishnu R Dahal, Eva Mutunga, Andrew Grizzle, Christopher D’Angelo, and Pawan Tyagi Magnetic Tunnel Junction-Based Molecular Spintronic Devices (MTJMSDs) are potential candidates for inventing highly correlated materials and devices. However, a knowledge gap exists about the impact of variation in length and thickness of ferromagnetic(FM) electrodes on molecular spintronics devices. This paper reports our experimental observations providing the dramatic impact of variation in ferromagnetic electrode length and thickness on paramagnetic molecule-based MTJMSD. Room temperature transport studies were performed to investigate the effect of FM electrode thickness. On the other hand, magnetic force microscopy measurements were conducted to understand the effect of FM electrode length extending beyond the molecular junction area, i.e., the site where paramagnetic molecules bridged between two FM. In the strong molecular coupling regime, transport study suggested thickness variation caused ~1000 to million-fold differences in junction conductivity. MFM study revealed near-zero magnetic contrast for pillar-shaped MTJMSD without any extended FM electrode. However, MFM images showed a multitude of microscopic magnetic phases on cross junction shaped MTJMSD where FM electrodes extended beyond the junction area. To understand the intriguing experimental results, we conducted an in-depth theoretical study using Monte Carlo Simulation (MCS) approach. MCS study utilized a Heisenberg atomic model of cross junction shaped MTJMSD to gain insights about room temperature transport and MFM experimental observations of microscopic MTJMSD. To make this study applicable for a wide variety of MTJMSDs, we systematically studied the effect of variation in molecular coupling strength between magnetic molecules and ferromagnetic (FM) electrodes of various dimensions.more » « less
- 
            Magnetic tunnel junction (MTJ) can serve as an excellent testbed for connecting Molecule between two ferromagnetic electrodes. A paramagnetic molecule covalently bonded to two ferromagnetic electrodes with two thiol functional groups can produce intriguing transport and magnetic properties. We have chemically bonded paramagnetic molecules between two ferromagnetic electrodes of a MTJ along the exposed side edges. In this paper we discussed the observation of Molecule induced dramatic changes in the magnetic and transport properties of the conventional magnetic tunnel junctions. Paramagnetic molecules were chemically bonded to ferromagnetic electrodes to bridge them across the insulating spacer along the exposed edges. Paramagnetic molecular channels along the tunnel junction edges decreased the overall current, through tunnel barrier and molecular channels, > 5 orders of magnitude below the leakage current of the bare tunnel junction at room temperature. These molecules caused significant changes in the spin density of states due to potential spin filtering effect. Also, paramagnetic molecules produced antiferromagnetic coupling between the affected magnetic electrodes. In this state spin transport in the magnetic tunnel junction based molecular devices plummeted by several orders. It is also noteworthy that our experimental studies provide a platform to connect a vast variety of ferromagnetic leads to the even broader array of high potential molecules such as single molecular magnets, porphyrin, and single ion molecules. The strength of exchange coupling between ferromagnetic electrodes and molecules can be tailored by utilizing different tethers and terminal functional groups. The MTJMSD can provide an advanced form of logic and memory devices, including a testbed for the Molecule based quantum computation devices. Future study about the interaction between molecular magnets and ferromagnets and interaction of thiol ended alkanes with ferromagnets will be of very valuable. This study indicates the potential of magnetic molecules as a mean to transforming conventional magnetic tunnel junctions and producing unprecedented magnetic and transport properties.more » « less
- 
            Magnetic Tunnel Junction-based molecular spintronics devices (MTJMSDs) hold great potential for integrating paramagnetic molecules with ferromagnetic electrodes, creating a diverse array of metamaterials with novel magnetic behaviors. Understanding interactions, especially between molecules and electrode materials, is essential to advancing this field. In this study, we used Monte Carlo simulation (MCS) to examine the influence of Dzyaloshinskii-Moriya interaction(DMI) on the MTJMSDs. Our simulations reveal that the presence of DMI interaction significantly lowered the magnetization of the ferromagnetic (FM) electrode. This DMI effect on the FM electrode provides a potential mechanism to explain the experimental observations of losing magnetic contrast on one FM electrode of the MTJMSD. A cross-junction-shaped MTJMSD, where several thousands of paramagnetic Octametallic Molecular Complexes are covalently bonded between two FM electrodes along the junction edges, exhibited loss of magnetic contrast on one ferromagnet in MFM imaging. DMI's impact on FM electrode properties resembles the experimental observation on MTJMSD. Our MCS showed that the strong DMI induced alternating magnetic bands aligned in opposite directions on a ferromagnetic electrode. Molecule bridges transported the effect of the DMI-induced magnetic phases onto the FM electrode connected to the other end of the molecule. For the specific range of DMI, the direction of magnetization of the FM electrode present on the other end of the molecular channel could switch based on the nature of the DMI-induced magnetic phase present in the junction area. This study underscores the importance of antisymmetric interactions, like DMI, in influencing the magnetic properties of MTJMSD systems. In future MSD experimental studies, DMI on FM electrodes can be achieved by using suitable molecule-FM interfaces or multilayer FM electrodes harnessing spin-orbit coupling. MTJMSD test bed provides excellent opportunities for creating unprecedentedly strong molecule-FM electrode coupling and using multilayer electrodes.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    