skip to main content


Title: Allometric Relationships for Predicting Aboveground Biomass, Sapwood, and Leaf Area of Two-Needle Piñon Pine ( Pinus edulis ) Amid Open-Grown Conditions in Central New Mexico
Abstract

Pinus edulis Engelm. is a short-stature, drought-tolerant tree species that is abundant in piñon-juniper woodlands throughout semiarid ecosystems of the American Southwest. P. edulis is a model species among ecophysiological disciplines, with considerable research focus given to hydraulic functioning and carbon partitioning relating to mechanisms of tree mortality. Many ecological studies require robust estimates of tree structural traits such as biomass, active sapwood area, and leaf area. We harvested twenty trees from Central New Mexico ranging in size from 1.3 to 22.7 cm root crown diameter (RCD) to derive allometric relationships from measurements of RCD, maximum height, canopy area (CA), aboveground biomass (AGB), sapwood area (AS), and leaf area (AL). Total foliar mass was measured from a subset of individuals and scaled to AL from estimates of leaf mass per area. We report a strong nonlinear relationship to AGB as a function of both RCD and height, whereas CA scaled linearly. Total AS expressed a power relationship with RCD. Both AS and CA exhibited strong linear relationships with AL (R2 = 0.99), whereas RCD increased nonlinearly with AL. We improve on current models by expanding the size range of sampled trees and supplement the existing literature for this species.

Study Implications: Land managers need to better understand carbon and water dynamics in changing ecosystems to understand how those ecosystems can be sustainably used now and in the future. This study of two-needle pinon (Pinus edulis Engelm.) trees in New Mexico, USA, uses observations from unoccupied aerial vehicles, field measurements, and harvesting followed by laboratory analysis to develop allometric models for this widespread species. These models can be used to understand plant traits such biomass partitioning and sap flow, which in turn will help scientists and land managers better understand the ecosystem services provided by pinon pine across North America.

 
more » « less
Award ID(s):
1655499
NSF-PAR ID:
10474600
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Forest Science
Volume:
68
Issue:
2
ISSN:
0015-749X
Format(s):
Medium: X Size: p. 152-161
Size(s):
["p. 152-161"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We studied the relative effects of landscape configuration, environmental variables, forest age, and spatial variables on estimated aboveground biomass (AGB) in Costa Rican secondary rain forests patches. We measured trees ≥5 cm dbh in 24, 0.25 ha plots and estimatedAGBfor trees 5–24.9 cm dbh and for trees >25 cm dbh using two allometric equations based on multispecies models using tree dbh and wood‐specific gravity.AGBaveraged 87.3 Mg/ha for the 24 plots (not including remnant trees) and 123.4 Mg/ha including remnant trees (20 plots). There was no effect of forest age onAGB. Variation partitioning analysis showed that soils, climate, landscape configuration, and space together explained 61% of treeAGBvariance. When controlling for the effects of the other three variables, only soils remained significant. Soil properties, specifically K and Cu, had the strongest independent effect onAGB(variation partitioning,R2 = 0.17,p = 0.0310), indicating that in this landscape,AGBvariation in secondary forest patches is influenced by soil chemical properties. Elucidating the relative influence of soils inAGBvariation is critical for understanding changes associated with land cover modification across Neotropical landscapes, as it could have important consequences for land use planning since secondary forests are considered carbon sinks.

    Abstract in Spanish is available with online material.

     
    more » « less
  2. Abstract

    Trees are arguably the most diverse and complex macro-organisms on Earth. The equally diverse functions of trees directly impact fluxes of carbon, water and energy from the land surface. A number of recent studies have shed light on the substantial within-species variability across plant traits, including aspects of leaf morphology and plant allocation of photosynthates to leaf biomass. Yet, within-tree variability in leaf traits due to microclimatic variations, leaf hydraulic coordination across traits at different physiological scales and variations in leaf traits over a growing season remain poorly studied. This knowledge gap is stymieing the fundamental understanding of what drives trait variation and covariation from tissues to trees to landscapes. Here, we present an extensive dataset measuring within-tree heterogeneity in leaf traits in California’s blue oak (Quercus douglasii) across an edaphic gradient and over the course of a growing season at an oak–grass savanna in Southern CA, USA. We found a high level of within-tree crown leaf area:sapwood area variation that was not attributable to sample height or aspect. We also found a higher level of trait integration at the tree level, rather than branch level, suggesting that trees optimize water use at the organismal level. Despite the large variance in traits within a tree crown and across trees, we did not find strong evidence for adaptive plasticity or acclimation in leaf morphological traits (e.g., changes to phenotype which increased fitness) across temporal and spatial water availability gradients. Collectively, our results highlight strong variation in drought-related physiology, but limited evidence for adaptive trait plasticity over shorter time scales.

     
    more » « less
  3. Site description. This data package consists of data obtained from sampling surface soil (the 0-7.6 cm depth profile) in black mangrove (Avicennia germinans) dominated forest and black needlerush (Juncus roemerianus) saltmarsh along the Gulf of Mexico coastline in peninsular west-central Florida, USA. This location has a subtropical climate with mean daily temperatures ranging from 15.4 °C in January to 27.8 °C in August, and annual precipitation of 1336 mm. Precipitation falls as rain primarily between June and September. Tides are semi-diurnal, with 0.57 m median amplitudes during the year preceding sampling (U.S. NOAA National Ocean Service, Clearwater Beach, Florida, station 8726724). Sea-level rise is 4.0 ± 0.6 mm per year (1973-2020 trend, mean ± 95 % confidence interval, NOAA NOS Clearwater Beach station). The A. germinans mangrove zone is either adjacent to water or fringed on the seaward side by a narrow band of red mangrove (Rhizophora mangle). A near-monoculture of J. roemerianus is often adjacent to and immediately landward of the A. germinans zone. The transition from the mangrove to the J. roemerianus zone is variable in our study area. An abrupt edge between closed-canopy mangrove and J. roemerianus monoculture may extend for up to several hundred meters in some locations, while other stretches of ecotone present a gradual transition where smaller, widely spaced trees are interspersed into the herbaceous marsh. Juncus roemerianus then extends landward to a high marsh patchwork of succulent halophytes (including Salicornia bigellovi, Sesuvium sp., and Batis maritima), scattered dwarf mangrove, and salt pans, followed in turn by upland vegetation that includes Pinus sp. and Serenoa repens. Field design and sample collection. We established three study sites spaced at approximately 5 km intervals along the western coastline of the central Florida peninsula. The sites consisted of the Salt Springs (28.3298°, -82.7274°), Energy Marine Center (28.2903°, -82.7278°), and Green Key (28.2530°, -82.7496°) sites on the Gulf of Mexico coastline in Pasco County, Florida, USA. At each site, we established three plot pairs, each consisting of one saltmarsh plot and one mangrove plot. Plots were 50 m^2 in size. Plots pairs within a site were separated by 230-1070 m, and the mangrove and saltmarsh plots composing a pair were 70-170 m apart. All plot pairs consisted of directly adjacent patches of mangrove forest and J. roemerianus saltmarsh, with the mangrove forests exhibiting a closed canopy and a tree architecture (height 4-6 m, crown width 1.5-3 m). Mangrove plots were located at approximately the midpoint between the seaward edge (water-mangrove interface) and landward edge (mangrove-marsh interface) of the mangrove zone. Saltmarsh plots were located 20-25 m away from any mangrove trees and into the J. roemerianus zone (i.e., landward from the mangrove-marsh interface). Plot pairs were coarsely similar in geomorphic setting, as all were located on the Gulf of Mexico coastline, rather than within major sheltering formations like Tampa Bay, and all plot pairs fit the tide-dominated domain of the Woodroffe classification (Woodroffe, 2002, "Coasts: Form, Process and Evolution", Cambridge University Press), given their conspicuous semi-diurnal tides. There was nevertheless some geomorphic variation, as some plot pairs were directly open to the Gulf of Mexico while others sat behind keys and spits or along small tidal creeks. Our use of a plot-pair approach is intended to control for this geomorphic variation. Plot center elevations (cm above mean sea level, NAVD 88) were estimated by overlaying the plot locations determined with a global positioning system (Garmin GPS 60, Olathe, KS, USA) on a LiDAR-derived bare-earth digital elevation model (Dewberry, Inc., 2019). The digital elevation model had a vertical accuracy of ± 10 cm (95 % CI) and a horizontal accuracy of ± 116 cm (95 % CI). Soil samples were collected via coring at low tide in June 2011. From each plot, we collected a composite soil sample consisting of three discrete 5.1 cm diameter soil cores taken at equidistant points to 7.6 cm depth. Cores were taken by tapping a sleeve into the soil until its top was flush with the soil surface, sliding a hand under the core, and lifting it up. Cores were then capped and transferred on ice to our laboratory at the University of South Florida (Tampa, Florida, USA), where they were combined in plastic zipper bags, and homogenized by hand into plot-level composite samples on the day they were collected. A damp soil subsample was immediately taken from each composite sample to initiate 1 y incubations for determination of active C and N (see below). The remainder of each composite sample was then placed in a drying oven (60 °C) for 1 week with frequent mixing of the soil to prevent aggregation and liberate water. Organic wetland soils are sometimes dried at 70 °C, however high drying temperatures can volatilize non-water liquids and oxidize and decompose organic matter, so 50 °C is also a common drying temperature for organic soils (Gardner 1986, "Methods of Soil Analysis: Part 1", Soil Science Society of America); we accordingly chose 60 °C as a compromise between sufficient water removal and avoidance of non-water mass loss. Bulk density was determined as soil dry mass per core volume (adding back the dry mass equivalent of the damp subsample removed prior to drying). Dried subsamples were obtained for determination of soil organic matter (SOM), mineral texture composition, and extractable and total carbon (C) and nitrogen (N) within the following week. Sample analyses. A dried subsample was apportioned from each composite sample to determine SOM as mass loss on ignition at 550 °C for 4 h. After organic matter was removed from soil via ignition, mineral particle size composition was determined using a combination of wet sieving and density separation in 49 mM (3 %) sodium hexametaphosphate ((NaPO_3)_6) following procedures in Kettler et al. (2001, Soil Science Society of America Journal 65, 849-852). The percentage of dry soil mass composed of silt and clay particles (hereafter, fines) was calculated as the mass lost from dispersed mineral soil after sieving (0.053 mm mesh sieve). Fines could have been slightly underestimated if any clay particles were burned off during the preceding ignition of soil. An additional subsample was taken from each composite sample to determine extractable N and organic C concentrations via 0.5 M potassium sulfate (K_2SO_4) extractions. We combined soil and extractant (ratio of 1 g dry soil:5 mL extractant) in plastic bottles, reciprocally shook the slurry for 1 h at 120 rpm, and then gravity filtered it through Fisher G6 (1.6 μm pore size) glass fiber filters, followed by colorimetric detection of nitrite (NO_2^-) + nitrate (NO_3^-) and ammonium (NH_4^+) in the filtrate (Hood Nowotny et al., 2010,Soil Science Society of America Journal 74, 1018-1027) using a microplate spectrophotometer (Biotek Epoch, Winooski, VT, USA). Filtrate was also analyzed for dissolved organic C (referred to hereafter as extractable organic C) and total dissolved N via combustion and oxidation followed by detection of the evolved CO_2 and N oxide gases on a Formacs HT TOC/TN analyzer (Skalar, Breda, The Netherlands). Extractable organic N was then computed as total dissolved N in filtrate minus extractable mineral N (itself the sum of extractable NH_4-N and NO_2-N + NO_3-N). We determined soil total C and N from dried, milled subsamples subjected to elemental analysis (ECS 4010, Costech, Inc., Valencia, CA, USA) at the University of South Florida Stable Isotope Laboratory. Median concentration of inorganic C in unvegetated surface soil at our sites is 0.5 % of soil mass (Anderson, 2019, Univ. of South Florida M.S. thesis via methods in Wang et al., 2011, Environmental Monitoring and Assessment 174, 241-257). Inorganic C concentrations are likely even lower in our samples from under vegetation, where organic matter would dilute the contribution of inorganic C to soil mass. Nevertheless, the presence of a small inorganic C pool in our soils may be counted in the total C values we report. Extractable organic C is necessarily of organic C origin given the method (sparging with HCl) used in detection. Active C and N represent the fractions of organic C and N that are mineralizable by soil microorganisms under aerobic conditions in long-term soil incubations. To quantify active C and N, 60 g of field-moist soil were apportioned from each composite sample, placed in a filtration apparatus, and incubated in the dark at 25 °C and field capacity moisture for 365 d (as in Lewis et al., 2014, Ecosphere 5, art59). Moisture levels were maintained by frequently weighing incubated soil and wetting them up to target mass. Daily CO_2 flux was quantified on 29 occasions at 0.5-3 week intervals during the incubation period (with shorter intervals earlier in the incubation), and these per day flux rates were integrated over the 365 d period to compute an estimate of active C. Observations of per day flux were made by sealing samples overnight in airtight chambers fitted with septa and quantifying headspace CO_2 accumulation by injecting headspace samples (obtained through the septa via needle and syringe) into an infrared gas analyzer (PP Systems EGM 4, Amesbury, MA, USA). To estimate active N, each incubated sample was leached with a C and N free, 35 psu solution containing micronutrients (Nadelhoffer, 1990, Soil Science Society of America Journal 54, 411-415) on 19 occasions at increasing 1-6 week intervals during the 365 d incubation, and then extracted in 0.5 M K_2SO_4 at the end of the incubation in order to remove any residual mineral N. Active N was then quantified as the total mass of mineral N leached and extracted. Mineral N in leached and extracted solutions was detected as NH_4-N and NO_2-N + NO_3-N via colorimetry as above. This incubation technique precludes new C and N inputs and persistently leaches mineral N, forcing microorganisms to meet demand by mineralizing existing pools, and thereby directly assays the potential activity of soil organic C and N pools present at the time of soil sampling. Because this analysis commences with disrupting soil physical structure, it is biased toward higher estimates of active fractions. Calculations. Non-mobile C and N fractions were computed as total C and N concentrations minus the extractable and active fractions of each element. This data package reports surface-soil constituents (moisture, fines, SOM, and C and N pools and fractions) in both gravimetric units (mass constituent / mass soil) and areal units (mass constituent / soil surface area integrated through 7.6 cm soil depth, the depth of sampling). Areal concentrations were computed as X × D × 7.6, where X is the gravimetric concentration of a soil constituent, D is soil bulk density (g dry soil / cm^3), and 7.6 is the sampling depth in cm. 
    more » « less
  4. Summary

    Shifts in the age or turnover time of non‐structural carbohydrates (NSC) may underlie changes in tree growth under long‐term increases in drought stress associated with climate change. But NSC responses to drought are challenging to quantify, due in part to large NSC stores in trees and subsequently long response times of NSC to climate variation.

    We measured NSC age (Δ14C) along with a suite of ecophysiological metrics inPinus edulistrees experiencing either extreme short‐term drought (−90% ambient precipitation plot, 2020–2021) or a decade of severe drought (−45% plot, 2010–2021). We tested the hypothesis that carbon starvation – consumption exceeding synthesis and storage – increases the age of sapwood NSC.

    One year of extreme drought had no impact on NSC pool size or age, despite significant reductions in predawn water potential, photosynthetic rates/capacity, and twig and needle growth. By contrast, long‐term drought halved the age of the sapwood NSC pool, coupled with reductions in sapwood starch concentrations (−75%), basal area increment (−39%), and bole respiration rates (−28%).

    Our results suggest carbon starvation takes time, as tree carbon reserves appear resilient to extreme disturbance in the short term. However, after a decade of drought, trees apparently consumed old stored NSC to support metabolism.

     
    more » « less
  5. Meinzer, Frederick (Ed.)
    Abstract In trees, large uncertainties remain in how nonstructural carbohydrates (NSCs) respond to variation in water availability in natural, intact ecosystems. Variation in NSC pools reflects temporal fluctuations in supply and demand, as well as physiological coordination across tree organs in ways that differ across species and NSC fractions (e.g., soluble sugars vs starch). Using landscape-scale crown (leaves and twigs) NSC concentration measurements in three foundation tree species (Populus tremuloides, Pinus edulis, Juniperus osteosperma), we evaluated in situ, seasonal variation in NSC responses to moisture stress on three timescales: short-term (via predawn water potential), seasonal (via leaf δ13C) and annual (via current year’s ring width index). Crown NSC responses to moisture stress appeared to depend on hydraulic strategy, where J. osteosperma appears to regulate osmotic potentials (via higher sugar concentrations), P. edulis NSC responses suggest respiratory depletion and P. tremuloides responses were consistent with direct sink limitations. We also show that overly simplistic models can mask seasonal and tissue variation in NSC responses, as well as strong interactions among moisture stress at different timescales. In general, our results suggest large seasonal variation in crown NSC concentrations reflecting the multiple cofunctions of NSCs in plant tissues, including storage, growth and osmotic regulation of hydraulically vulnerable leaves. We emphasize that crown NSC pool size cannot be viewed as a simple physiological metric of stress; in situ NSC dynamics are complex, varying temporally, across species, among NSC fractions and among tissue types. 
    more » « less