skip to main content

Title: Understanding Attacking Behaviors Toward Password-based Mobile User Authentication
Password-based mobile user authentication is vulnerable to a variety of security threats. Shoulder-surfing is the key to those security threats. Despite a large body of research on password security with mobile devices, existing studies have focused on shaping the security behavior of mobile users by enhancing the strengths of user passwords or by establishing secure password composition policies. There is little understanding of how an attacker actually goes about observing the password of a target user. This study empirically examines attackers’ behaviors in observing passwordbased mobile user authentication sessions across the three observation attempts. It collects data through a longitudinal user study and analyzes the data collected through a system log. The results reveal several behavioral patterns of attackers. The findings suggest that attackers are strategic in deploying attacks of shoulder-surfing. The findings have implications for enhancing users’ password security and refining organizations’ password composition policies.
Authors:
Award ID(s):
1917537
Publication Date:
NSF-PAR ID:
10332445
Journal Name:
Who Are You?! Adventures in Authentication Workshop
Sponsoring Org:
National Science Foundation
More Like this
  1. Password-based mobile user authentication is vulnerable to shoulder-surfing. Despite the increasing research on user password entry behavior and mobile security, there is limited understanding of how an adversary identifies a password through shoulder-surfing during mobile authentication. This study empirically examines the behaviors and strategies of password identification through shoulder-surfing with multiple observation attempts and from different observation distances. The results of analyzing data collected from a user study reveal the strategies and dynamics of password identification behaviors. The findings have implications for enhancing users’ password security and improving the design of mobile authentication methods.
  2. Mobile devices typically rely on entry-point and other one-time authentication mechanisms such as a password, PIN, fingerprint, iris, or face. But these authentication types are prone to a wide attack vector and worse 1 INTRODUCTION Currently smartphones are predominantly protected a patterned password is prone to smudge attacks, and fingerprint scanning is prone to spoof attacks. Other forms of attacks include video capture and shoulder surfing. Given the increasingly important roles smartphones play in e-commerce and other operations where security is crucial, there lies a strong need of continuous authentication mechanisms to complement and enhance one-time authentication such that even if the authentication at the point of login gets compromised, the device is still unobtrusively protected by additional security measures in a continuous fashion. The research community has investigated several continuous authentication mechanisms based on unique human behavioral traits, including typing, swiping, and gait. To this end, we focus on investigating physiological traits. While interacting with hand-held devices, individuals strive to achieve stability and precision. This is because a certain degree of stability is required in order to manipulate and interact successfully with smartphones, while precision is needed for tasks such as touching or tapping a small target on themore »touch screen (Sitov´a et al., 2015). As a result, to achieve stability and precision, individuals tend to develop their own postural preferences, such as holding a phone with one or both hands, supporting hands on the sides of upper torso and interacting, keeping the phone on the table and typing with the preferred finger, setting the phone on knees while sitting crosslegged and typing, supporting both elbows on chair handles and typing. On the other hand, physiological traits, such as hand-size, grip strength, muscles, age, 424 Ray, A., Hou, D., Schuckers, S. and Barbir, A. Continuous Authentication based on Hand Micro-movement during Smartphone Form Filling by Seated Human Subjects. DOI: 10.5220/0010225804240431 In Proceedings of the 7th International Conference on Information Systems Security and Privacy (ICISSP 2021), pages 424-431 ISBN: 978-989-758-491-6 Copyrightc 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved still, once compromised, fail to protect the user’s account and data. In contrast, continuous authentication, based on traits of human behavior, can offer additional security measures in the device to authenticate against unauthorized users, even after the entry-point and one-time authentication has been compromised. To this end, we have collected a new data-set of multiple behavioral biometric modalities (49 users) when a user fills out an account recovery form in sitting using an Android app. These include motion events (acceleration and angular velocity), touch and swipe events, keystrokes, and pattern tracing. In this paper, we focus on authentication based on motion events by evaluating a set of score level fusion techniques to authenticate users based on the acceleration and angular velocity data. The best EERs of 2.4% and 6.9% for intra- and inter-session respectively, are achieved by fusing acceleration and angular velocity using Nandakumar et al.’s likelihood ratio (LR) based score fusion.« less
  3. With phishing attacks, password breaches, and brute-force login attacks presenting constant threats, it is clear that passwords alone are inadequate for protecting the web applications entrusted with our personal data. Instead, web applications should practice defense in depth and give users multiple ways to secure their accounts. In this paper we propose login rituals, which define actions that a user must take to authenticate, and web tripwires, which define actions that a user must not take to remain authenticated. These actions outline expected behavior of users familiar with their individual setups on applications they use often. We show how we can detect and prevent intrusions from web attackers lacking this familiarity with their victim's behavior. We design a modular and application-agnostic system that incorporates these two mechanisms, allowing us to add an additional layer of deception-based security to existing web applications without modifying the applications themselves. Next to testing our system and evaluating its performance when applied to five popular open-source web applications, we demonstrate the promising nature of these mechanisms through a user study. Specifically, we evaluate the detection rate of tripwires against simulated attackers, 88% of whom clicked on at least one tripwire. We also observe web users'more »creation of personalized login rituals and evaluate the practicality and memorability of these rituals over time. Out of 39 user-created rituals, all of them are unique and 79% of users were able to reproduce their rituals even a week after creation.« less
  4. As it becomes commonplace to use mobile devices to store personal and sensitive data, mobile user authentication (MUA) methods have witnessed significant advancement to improve data and device security. On the other hand, traditional MUA methods such as password (or passcode) are still being widely deployed. Despite the growing body of knowledge on technical strengths and security vulnerabilities of various MUA methods, the perception of mobile users may be different, which can play a decisive role in MUA adoption. Additionally, user preferences for MUA methods may be subject to the influence of their demographic factors and device types. Furthermore, the pervasive use of mobile devices has generated many situations that create new usability and security needs of MUA methods such as support of one-handed and/or sight-free interaction. This study investigates user perception and situational needs of MUA methods using a survey questionnaire. The research findings can guide the design and selection of MUA methods.
  5. Pattern unlock is a popular screen unlock scheme that protects the sensitive data and information stored in mobile devices from unauthorized access. However, it is also susceptible to various attacks, including guessing attacks, shoulder surfing attacks, smudge attacks, and side-channel attacks, which can achieve a high success rate in breaking the patterns. In this paper, we propose a new two-factor screen unlock scheme that incorporates surface electromyography (sEMG)-based biometrics with patterns for user authentication. sEMG signals are unique biometric traits suitable for person identification, which can greatly improve the security of pattern unlock. During a screen unlock session, sEMG signals are recorded when the user draws the pattern on the device screen. Time-domain features extracted from the recorded sEMG signals are then used as the input of a one-class classifier to identify the user is legitimate or not. We conducted an experiment involving 10 subjects to test the effectiveness of the proposed scheme. It is shown that the adopted time-domain sEMG features and one-class classifiers achieve good authentication performance in terms of the F 1 score and Half of Total Error Rate (HTER). The results demonstrate that the proposed scheme is a promising solution to enhance the security of patternmore »unlock.« less