Effector secretion by different routes mediates the molecular interplay between host plant and pathogen, but mechanistic details in eukaryotes are sparse. This may limit the discovery of new effectors that could be utilized for improving host plant disease resistance. In fungi and oomycetes, apoplastic effectors are secreted via the conventional endoplasmic reticulum (ER)-Golgi pathway, while cytoplasmic effectors are packaged into vesicles that bypass Golgi in an unconventional protein secretion (UPS) pathway. In Magnaporthe oryzae, the Golgi bypass UPS pathway incorporates components of the exocyst complex and a t-SNARE, presumably to fuse Golgi bypass vesicles to the fungal plasma membrane. Upstream, cytoplasmic effector mRNA translation in M. oryzae requires the efficient decoding of AA-ending codons. This involves the modification of wobble uridines in the anticodon loop of cognate tRNAs and fine-tunes cytoplasmic effector translation and secretion rates to maintain biotrophic interfacial complex integrity and permit host infection. Thus, plant-fungal interface integrity is intimately tied to effector codon usage, which is a surprising constraint on pathogenicity. Here, we discuss these findings within the context of fungal and oomycete effector discovery, delivery, and function in host cells. We show how cracking the codon code for unconventional cytoplasmic effector secretion in M. oryzae has revealed AA-ending codon usage bias in cytoplasmic effector mRNAs across kingdoms, including within the RxLR-dEER motif-encoding sequence of a bona fide Phytophthora infestans cytoplasmic effector, suggesting its subjection to translational speed control. By focusing on recent developments in understanding unconventional effector secretion, we draw attention to this important but understudied area of host-pathogen interactions. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .
more »
« less
tRNA modification and codon usage control pathogen secretion in host cells
Animal and plant microbial pathogens deploy effector proteins and virulence factors to manipulate host cell innate immunity, often using unconventional secretion routes that are poorly understood. Transfer RNA (tRNA) anticodon modifications occur across taxa, but few biological functions are known. Here, in the devastating blast fungus Magnaporthe oryzae, we find that unconventional protein secretion in living host rice cells depends on tRNA modification and codon usage. Using gene deletions, mass spectrometry and live-cell imaging, we characterized the M. oryzae Uba4-Urm1 sulfur relay system mediating tRNA anticodon wobble uridine 2-thiolation (s2U34), a conserved modification required for efficient decoding of AA-ending cognate codons. In M. oryzae, cytoplasmic effectors like Pwl2 and AVR-Pita are translocated into host cells via an unconventional secretion route; apoplastic effectors like Bas4 are secreted by the conventional ER-Golgi pathway. Loss of U34 thiolation abolished PWL2 and AVR-PITA (but not BAS4) mRNA translation in host cells. Paromomycin treatment, which increases near-cognate tRNA acceptance, restored Pwl2 and AVR-Pita production in U34 thiolation-deficient mutant strains. Synonymous AA- to ¬¬AG-ending codon changes remediated PWL2 mRNA translation in uba4; in UBA4+, expressing recoded PWL2 resulted in Pwl2 super-secretion that destabilized the microbe-host cell interface. Thus, wobble U34 tRNA thiolation and codon usage tune pathogen unconventional protein secretion in host cells.
more »
« less
- Award ID(s):
- 1758805
- PAR ID:
- 10332454
- Date Published:
- Journal Name:
- Research square
- ISSN:
- 2693-5015
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Modifications in the tRNA anticodon loop, adjacent to the three-nucleotide anticodon, influence translation fidelity by stabilizing the tRNA to allow for accurate reading of the mRNA genetic code. One example is the N1-methylguanosine modification at guanine nucleotide 37 (m 1 G37) located in the anticodon loop andimmediately adjacent to the anticodon nucleotides 34, 35, 36. The absence of m 1 G37 in tRNA Pro causes +1 frameshifting on polynucleotide, slippery codons. Here, we report structures of the bacterial ribosome containing tRNA Pro bound to either cognate or slippery codons to determine how the m 1 G37 modification prevents mRNA frameshifting. The structures reveal that certain codon–anticodon contexts and the lack of m 1 G37 destabilize interactions of tRNA Pro with the P site of the ribosome, causing large conformational changes typically only seen during EF-G-mediated translocation of the mRNA-tRNA pairs. These studies provide molecular insights into how m 1 G37 stabilizes the interactions of tRNA Pro with the ribosome in the context of a slippery mRNA codon.more » « less
-
Abstract Translation is the most error‐prone process in protein synthesis; however, it is important that accuracy is maintained because erroneous translation has been shown to affect all domains of life. Translational quality control is maintained by both proteins and RNA through intricate processes. The aminoacyl‐tRNA synthetases help maintain high levels of translational accuracy through the esterification of tRNA and proofreading mechanisms. tRNA is often recognized by an aminoacyl‐tRNA synthetase in a sequence and structurally dependent manner, sometimes involving modified nucleotides. Additionally, some proofreading mechanisms of aminoacyl‐tRNA synthetases require tRNA elements for hydrolysis of a noncognate aminoacyl‐tRNA. Finally, tRNA is also important for proper decoding of the mRNA message by codon and anticodon pairing. Here, recent developments regarding the importance of tRNA in maintenance of translational accuracy are reviewed. © 2019 IUBMB Life, 2019 © 2019 IUBMB Life, 71(8):1150–1157, 2019more » « less
-
null (Ed.)Viruses rely on their host’s translation machinery for the synthesis of their own proteins. Problems belie viral translation when the host has a codon usage bias (CUB) that is different from an infecting virus due to differences in the GC content between the host and virus genomes. Here, we examine the hypothesis that chloroviruses adapted to host CUB by acquisition and selection of tRNAs that at least partially favor their own CUB. The genomes of 41 chloroviruses comprising three clades, each infecting a different algal host, have been sequenced, assembled and annotated. All 41 viruses not only encode tRNAs, but their tRNA genes are located in clusters. While differences were observed between clades and even within clades, seven tRNA genes were common to all three clades of chloroviruses, including the tRNAArg gene, which was found in all 41 chloroviruses. By comparing the codon usage of one chlorovirus algal host, in which the genome has been sequenced and annotated (67% GC content), to that of two of its viruses (40% GC content), we found that the viruses were able to at least partially overcome the host’s CUB by encoding tRNAs that recognize AU-rich codons. Evidence presented herein supports the hypothesis that a chlorovirus tRNA cluster was present in the most recent common ancestor (MRCA) prior to divergence into three clades. In addition, the MRCA encoded a putative isoleucine lysidine synthase (TilS) that remains in 39/41 chloroviruses examined herein, suggesting a strong evolutionary pressure to retain the gene. TilS alters the anticodon of tRNAMet that normally recognizes AUG to then recognize AUA, a codon for isoleucine. This is advantageous to the chloroviruses because the AUA codon is 12–13 times more common in the chloroviruses than their host, further helping the chloroviruses to overcome CUB. Among large DNA viruses infecting eukaryotes, the presence of tRNA genes and tRNA clusters appear to be most common in the Phycodnaviridae and, to a lesser extent, in the Mimiviridae.more » « less
-
Abstract One of the common mechanisms to trigger plant innate immunity is recognition of pathogen avirulence gene products directly by products of major resistance (R) genes in a gene for gene manner. In the USA, theRgenes,Pik-s, PiKh/m, andPi-ta, Pi-39(t), andPtrgenes have been effectively deployed to prevent the infections ofM. oryzaeraces, IB49, and IC17 for some time.Pi-9is only recently being deployed to provide overlapped and complimentary resistance toMagnaporthe oryzaeraces IB49, IC17 and IE1k in the USA. Pi-ta, Pi-39(t), Pi9 are major nuclear binding site-leucine rich (NLR) proteins, and Ptr is an atypical R protein with 4 armadillo repeats. AlphaFold is an artificial intelligence system that predicts a protein 3D structure from its amino acid sequence. Here we report genome sequence analyses of the effectors and avirulence (AVR) genes,AVR-PitaandAVR-Pik, andAVR-Pi9, in 3 differentialM. oryzaeraces. Using AlphaFold 2 and 3 we find strong evidence of direct interactions of products of resistance genesPi-taandPikwithM. oryzaeavirulence (AVR) genes,AVR-PitaandAVR-Pikrespectively. We also found that AVR-Pita interacts with Pi-39(t) and Ptr, and Pi9 interacts with both AVR-Pi9 and AVR-Pik. Validation of direct interactions of two pairs of R and AVR proteins supported a direct interaction mechanism of plant innate immunity. Detecting interaction of both Ptr and Pi39(t) with AVR-Pita, and Pi-9 with both AVR-Pi9 and AVR-Pik, revealed a new insight into recognition of pathogen signaling molecules by these host R genes in triggering plant innate immunity.more » « less
An official website of the United States government

