skip to main content


Title: Reading light: leaf spectra capture fine‐scale diversity of closely related, hybridizing arctic shrubs
Summary

Leaf reflectance spectroscopy is emerging as an effective tool for assessing plant diversity and function. However, the ability of leaf spectra to detect fine‐scale plant evolutionary diversity in complicated biological scenarios is not well understood.

We test if reflectance spectra (400–2400 nm) can distinguish species and detect fine‐scale population structure and phylogenetic divergence – estimated from genomic data – in two co‐occurring, hybridizing, ecotypically differentiated species ofDryas. We also analyze the correlation among taxonomically diagnostic leaf traits to understand the challenges hybrids pose to classification models based on leaf spectra.

Classification models based on leaf spectra identified two species ofDryaswith 99.7% overall accuracy and genetic populations with 98.9% overall accuracy. All regions of the spectrum carried significant phylogenetic signal. Hybrids were classified with an average overall accuracy of 80%, and our morphological analysis revealed weak trait correlations within hybrids compared to parent species.

Reflectance spectra captured genetic variation and accurately distinguished fine‐scale population structure and hybrids of morphologically similar, closely related species growing in their home environment. Our findings suggest that fine‐scale evolutionary diversity is captured by reflectance spectra and should be considered as spectrally‐based biodiversity assessments become more prevalent.

 
more » « less
Award ID(s):
2021898
NSF-PAR ID:
10446955
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
New Phytologist
Volume:
232
Issue:
6
ISSN:
0028-646X
Page Range / eLocation ID:
p. 2283-2294
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Aim

    With plant biodiversity under global threat, there is an urgent need to monitor the spatial distribution of multiple axes of biodiversity. Remote sensing is a critical tool in this endeavour. One remote sensing approach for detecting biodiversity is based on the hypothesis that the spectral diversity of plant communities is a surrogate of multiple dimensions of biodiversity. We investigated the generality of this ‘surrogacy’ for spectral, species, functional and phylogenetic diversity across 1,267 plots in the Greater Cape Floristic Region (GCFR), a hyper‐diverse region comprising several biomes and two adjacent global biodiversity hotspots.

    Location

    The GCFR centred in south‐western and western South Africa.

    Time period

    All data were collected between 1978–2014.

    Major taxa studied

    Vascular plants within the GCFR.

    Methods

    Spectral diversity was calculated using leaf reflectance spectra (450–950 nm) and was related to other dimensions of biodiversity via linear models. The accuracy of different spectral diversity metrics was compared using 10‐fold cross‐validation.

    Results

    We found that a distance‐based spectral diversity metric was a robust predictor of species, functional and phylogenetic biodiversity. This result serves as a proof‐of‐concept that spectral diversity is a potential surrogate of biodiversity across a hyper‐diverse biogeographic region. While our results support the generality of spectral diversity as a biodiversity surrogate, we also find that relationships vary between different geographic subregions and biomes, suggesting that differences in broad‐scale community composition can affect these relationships.

    Main conclusions

    Spectral diversity was shown to be a robust surrogate of multiple dimensions of biodiversity across biomes and a widely varying biogeographic region. We also extend these surrogacy relationships to ecological redundancy to demonstrate the potential for additional insights into community structure based on spectral reflectance.

     
    more » « less
  2. Abstract

    Imaging spectroscopy has the potential to map closely related plant taxa at landscape scales. Although spectral investigations at the leaf and canopy levels have revealed relationships between phylogeny and reflectance, understanding how spectra differ across, and are inherited from, genotypes of a single species has received less attention. We used a common-garden population of four varieties of the keystone canopy tree,Metrosideros polymorpha, from Hawaii Island and four F1-hybrid genotypes derived from controlled crosses to determine if reflectance spectra discriminate sympatric, conspecific varieties of this species and their hybrids. With a single exception, pairwise comparisons of leaf reflectance patterns successfully distinguished varieties ofM. polymorphaon Hawaii Island as well as populations of the same variety from different islands. Further, spectral variability within a single variety from Hawaii Island and the older island of Oahu was greater than that observed among the four varieties on Hawaii Island. F1 hybrids most frequently displayed leaf spectral patterns intermediate to those of their parent taxa. Spectral reflectance patterns distinguished each of two of the hybrid genotypes from one of their parent varieties, indicating that classifying hybrids may be possible, particularly if sample sizes are increased. This work quantifies a baseline in spectral variability for an endemic Hawaiian tree species and advances the use of imaging spectroscopy in biodiversity studies at the genetic level.

     
    more » « less
  3. Abstract

    Anthropogenic environmental changes are known to affect the Earth's ecosystems. However, how these changes influence assembly trajectories of the impacted communities remains a largely open question.

    In this study, we investigated the effect of elevated nitrogen (N) deposition and increased precipitation on plant taxonomic and phylogenetic β‐diversity in a 9‐year field experiment in the temperate semi‐arid steppe of Inner Mongolia, China.

    We found that both N and water addition significantly increased taxonomic β‐diversity, whereas N, not water, addition significantly increased phylogenetic β‐diversity. After the differences in local species diversity were controlled using null models, the standard effect size of taxonomic β‐diversity still increased with both N and water addition, whereas water, not N, addition, significantly reduced the standard effect size of phylogenetic β‐diversity. The increased phylogenetic convergence observed in the water addition treatment was associated with colonizing species in each water addition plot being more closely related to species in other replicate plots of the same treatment. Species colonization in this treatment was found to be trait‐based, with leaf nitrogen concentration being the key functional trait.

    Synthesis.Our analyses demonstrate that anthropogenic environmental changes may affect the assembly trajectories of plant communities at both taxonomic and phylogenetic scales. Our results also suggest that while stochastic processes may cause communities to diverge in species composition, deterministic process could still drive communities to converge in phylogenetic community structure.

     
    more » « less
  4. Abstract

    Topography affects abiotic conditions which can influence the structure, function and dynamics of ecological communities. An increasing number of studies have demonstrated biological consequences of fine‐scale topographic heterogeneity but we have a limited understanding of how these effects depend on the climate context.

    We merged high‐resolution (1 m2) data on topography and canopy height derived from airborne lidar with ground‐based data from 15 forest plots in Puerto Rico distributed along a precipitation gradient spanningc. 800–3,500 mm/year. Ground‐based data included species composition, estimated above‐ground biomass (AGB), and two key functional traits (wood density and leaf mass per area, LMA) that reflect resource‐use strategies and a trade‐off between hydraulic safety and hydraulic efficiency. We used hierarchical Bayesian models to evaluate how the interaction between topography × climate is related to metrics of forest structure (i.e. canopy height and AGB), as well as taxonomic and functional alpha‐ and beta‐diversity.

    Fine‐scale topography (characterized with the topographic wetness index, TWI) significantly affected forest structure and the strength (and in some cases direction) of these effects varied across the precipitation gradient. In all plots, canopy height increased with topographic wetness but the effect was much stronger in dry compared to wet forest plots. In dry forest plots, topographically wetter microsites also had higher levels of AGB but in wet forest plots, topographically drier microsites had higher AGB.

    Fine‐scale topography influenced functional composition but had only weak or non‐significant effects on taxonomic and functional alpha‐ and beta‐diversity. For instance, community‐weighted wood density followed a similar pattern to AGB across plots. We also found a marginally significant association between variation of wood density and topographic heterogeneity that depended on climate context.

    Synthesis. The effects of fine‐scale topographic heterogeneity on tropical forest structure and composition depend on the climate context. Our study demonstrates how a stronger integration of topographic heterogeneity across precipitation gradients could improve estimates of forest structure and biomass, and may provide insight to the ways that topography might mediate species responses to drought and climate change.

     
    more » « less
  5. Abstract

    Sensory systems perform fitness‐relevant functions, and specialized sensory structures allow organisms to accomplish challenging tasks. However, broad comparative analyses of sensory morphologies and their performance are lacking for diverse mammalian radiations.

    Neotropical leaf‐nosed bats (Phyllostomidae) are one of the most ecologically diverse mammal groups; including a wide range of diets and foraging behaviours, and extreme morphological variation in external sensory structures used in echolocation (nose leaf and pinnae).

    We coupled 3D geometric morphometrics and acoustic field recordings under a phylogenetic framework to investigate the mechanisms underlying the diversification of external sensory morphologies in phyllostomids, and explored the potential implications of sensory morphological diversity to functional outputs and dietary ecology.

    We found that the nose leaf consists of two evolutionary modules—spear and horseshoe—suggesting that modularity enabled morphological and functional diversification of this structure.

    We found a significant association between some aspects of nose leaf shape and maximum frequency and bandwidth of echolocation calls, but not between pinnae shape and echolocation call parameters. This may be explained by the use of multiple sensory modes across phyllostomids and plasticity of some echolocation call parameters.

    Species with different diets significantly differed in nose leaf shape, specifically in spear breadth, presence of a midrib, and cupping and anterior rotation of the horseshoe. This may relate to different levels of prey type specificity within each diet. Pinnae shape significantly differed between species that consume non‐mobile, non‐evasive prey (broad rounded, cupped pinnae) and mobile, evasive prey (flattened pinnae with a sharp tapering apex). This may reflect the use of different sound cues to detect prey.

    Our results give insight into the morphological evolution of external sensory structures in bats, and highlight new links between morphological diversity and ecology.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

     
    more » « less