skip to main content


Title: Biogeography of root‐associated fungi in foundation grasses of North American plains
Abstract Aim

Roots and rhizospheres host diverse microbial communities that can influence the fitness, phenotypes, and environmental tolerances of plants. Documenting the biogeography of these microbiomes can detect the potential for a changing environment to disrupt host‐microbe interactions, particularly in cases where microbes buffer hosts against abiotic stressors. We evaluated whether root‐associated fungi had poleward declines in diversity, tested whether fungal communities in roots shifted near host plant range edges, and determined the relative importance of environmental and host predictors of root fungal community structure.

Location

North American plains grasslands.

Taxon

Foundation grasses –Andropogon gerardii, Bouteloua dactyloides, B. eriopoda, B. gracilis,andSchizachyrium scopariumand root fungi.

Methods

At each of 24 sites representing three replicate 17°–latitudinal gradients, we collected roots from 12 individuals per species along five transects spaced 10 m apart (40 m × 40 m grid). We used next‐generation sequencing of ITS2, direct fungal culturing from roots, and microscopy to survey fungi associated with grass roots.

Results

Root‐associated fungi did not follow the poleward declines in diversity documented for many animals and plants. Instead, host plant identity had the largest influence on fungal community structure. Edaphic factors outranked climate or host plant traits as correlates of fungal community structure; however, the relative importance of environmental predictors differed among plant species. As sampling approached host species range edges, fungal composition converged in similarity among individual plants of each grass species.

Main conclusions

Environmental predictors of root‐associated fungi depended strongly on host plant species identity. Biogeographic patterns in fungal composition suggested a homogenizing influence of stressors at host plant range limits. Results predict that communities of non‐mycorrhizal, root‐associated fungi in the North American plains will be more sensitive to future changes in host plant ranges and edaphic factors than to the direct effects of climate.

 
more » « less
Award ID(s):
1655499 2025849 1936195
NSF-PAR ID:
10367880
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Biogeography
Volume:
49
Issue:
1
ISSN:
0305-0270
Format(s):
Medium: X Size: p. 22-37
Size(s):
["p. 22-37"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Aim: Roots and rhizospheres host diverse microbial communities that can influence the fitness, phenotypes, and environmental tolerances of host plants. Documenting the biogeography of microbiomes can detect the potential for a changing environment to disrupt host-microbe interactions, particularly in cases where microbes, such as root-associated Ascomycota, buffer hosts against abiotic stressors. We evaluated whether root-associated fungi had poleward declines in diversity as occur for many animals and plants, tested whether microbial communities shifted near host plant range edges, and determined the relative importance of latitude, climate, edaphic factors, and host plant traits as predictors of fungal community structure. Location: North American plains grasslands Taxon: Foundation North American grass species ⎯ Andropogon gerardii, Bouteloua eriopoda, B. gracilis, B. dactyloides, and Schizachyrium scoparium and their root-associated fungi Methods: At each of 24 sites representing three replicate latitudinal gradients spanning 17° latitude, we collected roots from 12 individual plants per species along five transects spaced 10 m apart (40 m × 40 m grid). We used next-generation sequencing of the fungal ITS2 region, direct fungal culturing from roots, and microscopy to survey fungi associated with grass roots. Results: Root-associated fungi did not follow the poleward declines in diversity documented for many animals and plants. Instead, host plant identity had the largest influence on fungal community structure. Edaphic factors outranked climate or host plant traits as correlates of fungal community structure; however, the relative importance of these environmental predictors differed among plant species. As sampling approached host species range edges, fungal composition converged among individual plants of each grass species. Main conclusions: Environmental predictors of root-associated fungi depended strongly on host plant species identity. Biogeographic patterns in fungal composition suggested a homogenizing influence of stressors at host plant range limits. Results predict that communities of non-mycorrhizal, root-associated fungi in the North American plains will be more sensitive to future changes in host plant ranges and edaphic factors than to the direct effects of climate. 
    more » « less
  2. PREMISE

    Root‐associated fungi provide a wide range of functions for their host plants, including nutrient provisioning, pathogen protection, and stress alleviation. In so doing, they can markedly influence host‐plant structural and physiological traits, although the degree to which these effects vary within particular plant host species is not well understood.

    METHODS

    We conducted a 7‐month common‐garden inoculation experiment to test the potential effects of a marine fungus (Lulwoanasp.) on the phenotypic traits of different genotypes of the host, the salt marsh plant speciesSpartina alterniflora.Lulwoanabelongs to the dark septate endophytes (DSE), a polyphyletic group of fungi that are commonly found colonizing healthy plant roots, though their ecological role remains unclear.

    RESULTS

    We documented significant impacts ofLulwoanaonS. alternifloramorphology, biomass, and biomass allocation. For most traits in our study, these impacts varied significantly in direction and/or magnitude acrossS. alternifloragenotypes. Effects that were consistent across genotype were generally negative. Plant response was not predicted by the percentage of roots colonized, consistent with findings that dark septate endophytes do not necessarily influence plant growth responses through direct contact with roots.

    CONCLUSIONS

    The observed changes in stem height, biomass, and biomass allocation have important effects on plant competitive ability, growth, and fitness, suggesting that plant–fungal interactions have community and ecosystem level effects in salt marshes.

     
    more » « less
  3. Abstract

    Fungal symbionts can buffer plants from environmental extremes and may affect host capacities to acclimate, adapt, or redistribute under environmental change; however, the distributions of fungal symbionts along abiotic gradients are poorly described. Fungal mutualists should be the most beneficial in abiotically stressful environments, and the structure of networks of plant-fungal interactions likely shift along gradients, even when fungal community composition does not track environmental stress. We sampled 634 unique combinations of fungal endophytes and mycorrhizal fungi, grass species identities, and sampling locations from 66 sites across six replicate altitudinal gradients in the western Colorado Rocky Mountains. The diversity and composition of leaf endophytic, root endophytic, and arbuscular mycorrhizal (AM) fungal guilds and the overall abundance of fungal functional groups (pathogens, saprotrophs, mutualists) tracked grass host identity more closely than elevation. Network structures of root endophytes become more nested and less specialized at higher elevations, but network structures of other fungal guilds did not vary with elevation. Overall, grass species identity had overriding influence on the diversity and composition of above- and belowground fungal endophytes and AM fungi, despite large environmental variation. Therefore, in our system climate change may rarely directly affect fungal symbionts. Instead, fungal symbiont distributions will most likely track the range dynamics of host grasses.

     
    more » « less
  4. Abstract Background

    Root and soil microbial communities constitute the below-ground plant microbiome, are drivers of nutrient cycling, and affect plant productivity. However, our understanding of their spatiotemporal patterns is confounded by exogenous factors that covary spatially, such as changes in host plant species, climate, and edaphic factors. These spatiotemporal patterns likely differ across microbiome domains (bacteria and fungi) and niches (root vs. soil).

    Results

    To capture spatial patterns at a regional scale, we sampled the below-ground microbiome of switchgrass monocultures of five sites spanning > 3 degrees of latitude within the Great Lakes region. To capture temporal patterns, we sampled the below-ground microbiome across the growing season within a single site. We compared the strength of spatiotemporal factors to nitrogen addition determining the major drivers in our perennial cropping system. All microbial communities were most strongly structured by sampling site, though collection date also had strong effects; in contrast, nitrogen addition had little to no effect on communities. Though all microbial communities were found to have significant spatiotemporal patterns, sampling site and collection date better explained bacterial than fungal community structure, which appeared more defined by stochastic processes. Root communities, especially bacterial, were more temporally structured than soil communities which were more spatially structured, both across and within sampling sites. Finally, we characterized a core set of taxa in the switchgrass microbiome that persists across space and time. These core taxa represented < 6% of total species richness but > 27% of relative abundance, with potential nitrogen fixing bacteria and fungal mutualists dominating the root community and saprotrophs dominating the soil community.

    Conclusions

    Our results highlight the dynamic variability of plant microbiome composition and assembly across space and time, even within a single variety of a plant species. Root and soil fungal community compositions appeared spatiotemporally paired, while root and soil bacterial communities showed a temporal lag in compositional similarity suggesting active recruitment of soil bacteria into the root niche throughout the growing season. A better understanding of the drivers of these differential responses to space and time may improve our ability to predict microbial community structure and function under novel conditions.

     
    more » « less
  5. Plants are typically infected by a consortium of internal fungal associates, including endophytes in their leaves, as well as arbuscular mycorrhizal fungi (AMF) and dark septate endophytes (DSE) in their roots. It is logical that these organisms will interact with each other and the abiotic environment in addition to their host, but there has been little work to date examining the interactions of multiple symbionts within single plant hosts, or how the relationships among symbionts and their host change across environmental conditions. We examined the grassAgrostis capillarisin the context of a climate manipulation experiment in prairies in the Pacific Northwest, USA. Each plant was tested for presence of foliar endophytes in the genusEpichloë, and we measured percent root length colonized (PRLC) by AMF and DSE. We hypothesized that the symbionts in our system would be in competition for host resources, that the outcome of that competition could be driven by the benefit to the host, and that the host plants would be able to allocate carbon to the symbionts in such a way as to maximize fitness benefit within a particular environmental context. We found a correlation between DSE and AMF PRLC across climatic conditions; we also found a fitness cost to increasing DSE colonization, which was negated by presence ofEpichloëendophytes. These results suggest that selective pressure on the host is likely to favor host/symbiont relationships that structure the community of symbionts in the most beneficial way possible for the host, not necessarily favoring the individual symbiont that is most beneficial to the host in isolation. These results highlight the need for a more integrative, systems approach to the study of host/symbiont consortia.

     
    more » « less