skip to main content


Title: Groundwater Affects the Geomorphic and Hydrologic Properties of Coevolved Landscapes
Abstract

The hydrologic dynamics and geomorphic evolution of watersheds are intimately coupled—runoff generation and water storage are controlled by topography and properties of the surface and subsurface, while also affecting the evolution of those properties over geologic time. However, the large disparity between their timescales has made it difficult to examine interdependent controls on emergent hydrogeomorphic properties, such as hillslope length, drainage density, and extent of surface saturation. In this study, we develop a new model coupling hydrology and landscape evolution to explore how runoff generation affects long‐term catchment evolution, and analyze numerical results using a nondimensional scaling framework. We focus on hydrologic processes dominating in humid climates where storm runoff primarily arises from shallow subsurface flow and from precipitation on saturated areas. The model solves hydraulic groundwater equations to predict the water‐table elevation given prescribed, constant groundwater recharge. Water in excess of the subsurface capacity for transport becomes overland flow, which generates shear stress on the surface and may detach and transport sediment. This affects the landscape form that in turn affects runoff generation. We show that (a) four dimensionless parameters describe the possible steady state landscapes that coevolve under steady recharge; (b) hillslope length increases with increasing transmissivity relative to the recharge rate; (c) three topographic metrics—steepness index, Laplacian curvature, and topographic index—together provide a basis for interpreting landscapes that have coevolved with runoff generated via shallow subsurface flow. Finally we discuss the possibilities and limitations for quantitative comparisons between the model results and real landscapes.

 
more » « less
Award ID(s):
2012264 1654194 2012353 1831623 2104102
NSF-PAR ID:
10447431
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Earth Surface
Volume:
127
Issue:
1
ISSN:
2169-9003
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Climate change threatens water resources in snowmelt‐dependent regions by altering the fraction of snow and rain and spurring an earlier snowmelt season. The bulk of hydrological research has focused on forecasting response in streamflow volumes and timing to a shrinking snowpack; however, the degree to which subsurface storage offsets the loss of snow storage in various alpine geologic settings, i.e. the hydrogeologic buffering capacity, is still largely unknown. We address this research need by assessing the affects of climate change on storage and runoff generation for two distinct hydrogeologic settings present in alpine systems: a low storage granitic and a greater storage volcanic hillslope. We use a physically based integrated hydrologic model fully coupled to a land surface model to run a base scenario and then three progressive warming scenarios, and account for the shifts in each component of the water budget. For hillslopes with greater water retention, the larger storage volcanic hillslope buffered streamflow volumes and timing, but at the cost of greater reductions in groundwater storage relative to the low storage granite hillslope. We found that the results were highly sensitive to the unsaturated zone retention parameters, which in the case of alpine systems can be a mix of matrix or fracture flow. The presence of fractures and thus less retention in the unsaturated zone significantly decreased the reduction in recharge and runoff for the volcanic hillslope in climate warming scenarios. This approach highlights the importance of incorporating physically based subsurface flow in to alpine hydrology models, and our findings provide ways forward to arrive at a conceptual model that is both consistent with geology and hydrologic principles. Copyright © 2016 John Wiley & Sons, Ltd.

     
    more » « less
  2. Abstract

    The porous near‐surface layer of the Earth's crust – the critical zone – constitutes a vital reservoir of water for ecosystems, provides baseflow to streams, guides recharge to deep aquifers, filters contaminants from groundwater, and regulates the long‐term evolution of landscapes. Recent work suggests that the controls on regolith thickness include climate, tectonics, lithology, and vegetation. However, the relative paucity of observations of regolith structure and properties at landscape scales means that theoretical models of critical zone structure are incompletely tested. Here we present seismic refraction and electrical resistivity surveys that thoroughly characterize subsurface structure in a small catchment in the Santa Catalina Mountains, Arizona, USA, where slope‐aspect effects on regolith structure are expected based on differences in vegetation. Our results show a stark contrast in physical properties and inferred regolith thickness on opposing slopes, but in the opposite sense of that expected from environmental models and observed vegetation patterns. Although vegetation (as expressed by normalized difference vegetation index [NDVI]) is denser on the north‐facing slope, regolith on the south‐facing slope is four times thicker (as indicated by lower seismic velocities and resistivities). This contrast cannot be explained by variations in topographic stress or conventional hillslope morphology models. Instead, regolith thickness appears to be controlled by metamorphic foliation: regolith is thicker where foliation dips into the topography, and thinner where foliation is nearly parallel to the surface. We hypothesize that, in this catchment, hydraulic conductivity and infiltration capacity control weathering: infiltration is hindered and regolith is thin where foliation is parallel to the surface topography, whereas water infiltrates deeper and regolith is thicker where foliation intersects topography at a substantial angle. These results suggest that bedrock foliation, and perhaps by extension sedimentary layering, can control regolith thickness and must be accounted for in models of critical zone development. © 2020 John Wiley & Sons, Ltd.

     
    more » « less
  3. Abstract

    Upland permafrost regions occupy approximately one third of the Arctic landscape. In upland regions, hydrologic fluxes are influenced by water tracks, curvilinear features on hillslopes that preferentially fill with and route water in response to snowmelt and rainfall when the soil above continuous permafrost thaws in the summer. As continued warming of the Arctic may alter hydrologic cycling leading to increased frequency of extreme hydrologic events like drought and flooding as well as modification of biogeochemical cycling, it is imperative to untangle the interplay between precipitation, runoff, and subsurface flow as water is routed from upland Arctic regions to the Arctic Ocean. This study quantifies how ground surface temperatures affect groundwater discharge from hillslopes with water tracks in the upland Arctic by employing a three‐dimensional, physically based subsurface flow model with variable saturation and freeze and thaw capabilities that is calibrated to field measurements from the Upper Kuparuk River watershed on the North Slope of Alaska, USA. Model analysis indicates that higher ground surface temperatures along water track hillslopes promote increases in groundwater discharge where water tracks act as conduits for large‐recharge events and continue to discharge groundwater into the autumn after the adjacent hillslope has frozen. Simulating the conditions that distinguish water tracks from their hillslope watersheds changes subsurface water storage and ground thermal responses but does not alter the total magnitude of groundwater discharge outside of parameter uncertainty. These findings suggest that water tracks play a complex and critical role in hydrologic cycles of the upland Arctic.

     
    more » « less
  4. Abstract

    Threshold changes in rainfall‐runoff generation commonly represent shifts in runoff mechanisms and hydrologic connectivity controlling water and solute transport and transformation. In watersheds with limited human influence, threshold runoff responses reflect interaction between precipitation event and antecedent soil moisture. Similar analyses are lacking in intensively managed landscapes where installation of subsurface drainage tiles has altered connectivity between the land surface, groundwater, and streams, and where application of fertilizer has created significant stores of subsurface nitrogen. In this study, we identify threshold patterns of tile‐runoff generation for a drained agricultural field in Illinois and evaluate how antecedent conditions—including shallow soil moisture, groundwater table depth, and the presence or absence of crops—control tile response. We relate tile‐runoff thresholds to patterns of event nitrate load observed across multiple storm events and evaluate how antecedent conditions control within‐event nitrate concentration‐discharge relationships. Our results demonstrate that an event tile‐runoff threshold emerges relative to the sum of gross precipitation and indices of antecedent shallow soil moisture and antecedent below‐tile groundwater moisture deficit, indicating that both shallow soil and below‐tile storages must be filled to generate significant runoff. In turn, event nitrate load shows a linear dependence on runoff for most time periods, suggesting that subsurface nitrate export and storage can be estimated using runoff threshold relationships and long‐term average nitrate concentrations. Finally, within‐event nitrate concentration‐discharge relationships are controlled by event size and the antecedent tile flow state because these factors dictate the sequence of flow path activation and tile connectivity over a storm event.

     
    more » « less
  5. Abstract

    The Southern U.S. Piedmont ranging from Virginia to Georgia underwent severe gully erosion over a century of farming mainly for cotton (1800s–1930s). Although tree succession blanketed much of this region by the middle 20th century, gully erosion still occurs, especially during wet seasons. While many studies on gully erosion have focused on soil loss, soil carbon exchange, and stormwater response, the impacts on soil moisture, groundwater, and transpiration remain under‐studied. Using a newly developed 2D hydrologic model, this study analyzes the impacts of gully erosion on hillslope hydrologic states and fluxes. Results indicate that increases in gully incision lead to reduction in groundwater table, root zone soil moisture, and transpiration. These reductions show seasonal variations, but the season when the reduction is maximum differs among the hydrologic variables. Spatially, the impacts are generally the greatest near the toe of the hillslope and reduce further away from it, although the reductions are sometimes non‐monotonic. Overall, the impacts are larger for shallow gully depths and diminish as the incision goes deeper. Lastly, the extent of impacts on a heterogeneous hillslope is found to be very different with respect to a homogeneous surrogate made of dominant soil properties. These results show that through gully erosion, the landscape not only loses soil but also a large amount of water from the subsurface. The magnitude of water loss is, however, dependent on hydrogeologic and topographic configuration of the hillslope. The results will facilitate (a) mapping of relative susceptibility of landscapes to gullying, (b) understanding of the impacts of stream manipulations such as due to dredging on hillslope eco‐hydrology, (c) prioritization of mitigation measures to prevent gullying, and (d) design of observation campaigns to assess the impacts of gullying on hydrologic response.

     
    more » « less