skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Noncommutative Tensor Triangular Geometry and the Tensor Product Property for Support Maps
Abstract The problem of whether the cohomological support map of a finite dimensional Hopf algebra has the tensor product property has attracted a lot of attention following the earlier developments on representations of finite group schemes. Many authors have focused on concrete situations where positive and negative results have been obtained by direct arguments. In this paper we demonstrate that it is natural to study questions involving the tensor product property in the broader setting of a monoidal triangulated category. We give an intrinsic characterization by proving that the tensor product property for the universal support datum is equivalent to complete primeness of the categorical spectrum. From these results one obtains information for other support data, including the cohomological one. Two theorems are proved giving compete primeness and non-complete primeness in certain general settings. As an illustration of the methods, we give a proof of a recent conjecture of Negron and Pevtsova on the tensor product property for the cohomological support maps for the small quantum Borel algebras for all complex simple Lie algebras.  more » « less
Award ID(s):
2131243
PAR ID:
10332729
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
International Mathematics Research Notices
ISSN:
1073-7928
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We consider finite-dimensional Hopf algebras $$u$$ that admit a smooth deformation $$U\to u$$ by a Noetherian Hopf algebra $$U$$ of finite global dimension. Examples of such Hopf algebras include small quantum groups over the complex numbers, restricted enveloping algebras in finite characteristic, and Drinfeld doubles of height $$1$$ group schemes. We provide a means of analyzing (cohomological) support for representations over such $$u$$, via the singularity categories of the hypersurfaces $U/(f)$ associated with functions $$f$$ on the corresponding parametrization space. We use this hypersurface approach to establish the tensor product property for cohomological support, for the following examples: functions on a finite group scheme, Drinfeld doubles of certain height 1 solvable finite group schemes, bosonized quantum complete intersections, and the small quantum Borel in type $$A$$. 
    more » « less
  2. We consider the finite generation property for cohomology of a finite tensor category C \mathscr {C} , which requires that the self-extension algebra of the unit \operatorname {Ext}^\text {\tiny ∙ }_\mathscr {C}(\mathbf {1},\mathbf {1}) is a finitely generated algebra and that, for each object V V in C \mathscr {C} , the graded extension group \operatorname {Ext}^\text {\tiny ∙ }_\mathscr {C}(\mathbf {1},V) is a finitely generated module over the aforementioned algebra. We prove that this cohomological finiteness property is preserved under duality (with respect to exact module categories) and taking the Drinfeld center, under suitable restrictions on C \mathscr {C} . For example, the stated result holds when C \mathscr {C} is a braided tensor category of odd Frobenius-Perron dimension. By applying our general results, we obtain a number of new examples of finite tensor categories with finitely generated cohomology. In characteristic 0 0 , we show that dynamical quantum groups at roots of unity have finitely generated cohomology. We also provide a new class of examples in finite characteristic which are constructed via infinitesimal group schemes. 
    more » « less
  3. Iyengar, Srikanth (Ed.)
    We show that over a perfect field, every non-semisimple finite tensor category with finitely generated cohomology embeds into a larger such category where the tensor product property does not hold for support varieties. 
    more » « less
  4. The Hochschild cohomology of a tensor product of algebras is isomorphic to a graded tensor product of Hochschild cohomology algebras, as a Gerstenhaber algebra. A similar result holds when the tensor product is twisted by a bicharacter. We present new proofs of these isomorphisms, using Volkov’s homotopy liftings that were introduced for handling Gerstenhaber brackets expressed on arbitrary bimodule resolutions. Our results illustrate the utility of homotopy liftings for theoretical purposes. 
    more » « less
  5. Abstract We show that over a perfect field, every non‐semisimple finite tensor category with finitely generated cohomology embeds into a larger such category where the tensor product property does not hold for support varieties. 
    more » « less