- Award ID(s):
- 1904797
- NSF-PAR ID:
- 10332942
- Date Published:
- Journal Name:
- Biophysica
- Volume:
- 1
- Issue:
- 4
- ISSN:
- 2673-4125
- Page Range / eLocation ID:
- 429 to 444
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
The multicopper oxidase enzyme laccase holds great potential to be used for biological lignin valorization alongside a biocompatible ionic liquid (IL). However, the IL concentrations required for biomass pretreatment severely inhibit laccase activity. Due to their ability to function in extreme conditions, many thermophilic enzymes have found use in industrial applications. The thermophilic fungal laccase from Myceliophthora thermophila was found to retain high levels of activity in the IL [C 2 C 1 Im][EtSO 4 ], making it a desirable biocatalyst to be used for lignin valorization. In contrast to [C 2 C 1 Im][EtSO 4 ], the biocompatibility of [C 2 C 1 Im][OAC] with the laccase was markedly lower. Severe inhibition of laccase activity was observed in 15% [C 2 C 1 Im][OAc]. In this study, the enzyme surface charges were modified via acetylation, succinylation, cationization, or neutralization. However, these modifications did not show significant improvement in laccase activity or stability in [C 2 C 1 Im][OAc]. Docking simulations show that the IL docks close to the T1 catalytic copper, likely interfering with substrate binding. Although additional docking locations for [OAc] - are observed after making enzyme modifications, it does not appear that these locations play a role in the inhibition of enzyme activity. The results of this study could guide future enzyme engineering efforts by showing that the inhibition mechanism of [C 2 C 1 Im][OAc] toward M. thermophila laccase is likely not dependent upon the IL interacting with the enzyme surface.more » « less
-
Abstract Ionic liquid (IL)‐containing polymers garner attention for electrochemical applications. This article overviews recent experimental and theoretical studies of polymer electrolytes that would be likely to cultivate new theoretical and computational frameworks for IL‐containing polymers. The first two sections outline the uniqueness of ILs that differentiates them from inorganic salts in polymers and explore deviation from the concept of the metaphor “room‐temperature molten salt.” Such distinct properties include (1) large intrinsic dipole moment and electronic polarizability, (2) hydrogen bonding, (3) π‐interactions, (4) a broad distribution of charges over the entire ion, and (5) the anisotropy of the ions. Moreover, the complexity of these properties substantially increases when the ions are polymerized. Indeed, their exceptional features would overcome the hurdle due to a trade‐off between ionic conductivity and mechanical robustness in inorganic salt‐doped polymers. Given these facts, the rest of the article focuses on emerging trends in the study of the dielectric response, phase separation, ion conductivity, and mechanical robustness of the polymer electrolytes, highlighting outstanding observations in experiments that may inspire existing theory and simulation. Our discussion also includes improving computational complexity for IL‐containing polymers. To this end, recent machine learning studies that consider ILs and polymer liquids are presented.
-
Abstract The ignition of plasmas in liquids has applications from medical instrumentation to manipulation of liquid chemistry. Formation of plasmas directly in a liquid often requires prohibitively large voltages to initiate breakdown. Producing plasma streamers in bubbles submerged in a liquid with higher permittivity can significantly lower the voltage needed to initiate a discharge by reducing the electric field required to produce breakdown. The proximity of the bubble to the electrodes and the shape of the bubbles play critical roles in the manner in which the plasma is produced in, and propagates through, the bubble. In this paper, we discuss results from a three-dimensional direct numerical simulation (DNS) used to investigate the shapes of bubbles formed by injection of air into water. Comparisons are made to results from a companion experiment. A two-dimensional plasma hydrodynamics model was then used to capture the plasma streamer propagation in the bubble using a static bubble geometry generated by the DNS The simulations showed two different modes for streamer formation depending on the bubble shape. In an elliptical bubble, a short electron avalanche triggered a surface ionization wave (SIWs) resulting in plasma propagating along the surface of the bubble. In a circular bubble, an electron avalanche first traveled through the middle of the bubble before two SIWs began to propagate from the point closest to the grounded electrode where a volumetric streamer intersected the surface. In an elliptical bubble approaching a powered electrode in a pin-to-pin configuration, we experimentally observed streamer behavior that qualitatively corresponds with computational results. Optical emission captured over the lifetime of the streamer curve along the path of deformed bubbles, suggesting propagation of the streamer along the liquid/gas boundary interface. Plasma generation supported by the local field enhancement of the deformed bubble surface boundaries is a mechanism that is likely responsible for initiating streamer formation.
-
Abstract DNA glycosylase MutY plays a critical role in suppression of mutations resulted from oxidative damage, as highlighted by cancer-association of the human enzyme. MutY requires a highly conserved catalytic Asp residue for excision of adenines misinserted opposite 8-oxo-7,8-dihydroguanine (OG). A nearby Asn residue hydrogen bonds to the catalytic Asp in structures of MutY and its mutation to Ser is an inherited variant in human MUTYH associated with colorectal cancer. We captured structural snapshots of N146S Geobacillus stearothermophilus MutY bound to DNA containing a substrate, a transition state analog and enzyme-catalyzed abasic site products to provide insight into the base excision mechanism of MutY and the role of Asn. Surprisingly, despite the ability of N146S to excise adenine and purine (P) in vitro, albeit at slow rates, N146S-OG:P complex showed a calcium coordinated to the purine base altering its conformation to inhibit hydrolysis. We obtained crystal structures of N146S Gs MutY bound to its abasic site product by removing the calcium from crystals of N146S-OG:P complex to initiate catalysis in crystallo or by crystallization in the absence of calcium. The product structures of N146S feature enzyme-generated β-anomer abasic sites that support a retaining mechanism for MutY-catalyzed base excision.
-
ABSTRACT The use of ionic liquids (ILs) as media in radical polymerizations has demonstrated the ability of these unique solvents to improve both reaction kinetics and polymer product properties. However, the bulk of these studies have examined the polymerization behavior of common organic monomers (e.g., methyl methacrylate, styrene) dissolved in conventional ILs. There is increasing interest in polymerized ILs (poly(ILs)), which are ionomers produced from the direct polymerization of styrene‐, vinyl‐, and acrylate‐functionalized ILs. Here, the photopolymerization kinetics of IL monomers are investigated for systems in which styrene or vinyl functionalities are pendant from the imidazolium cation. Styrene‐functionalized IL monomers typically polymerized rapidly (full conversion ≤1 min) in both neat compositions or when diluted with a nonpolymerizable IL, [C2mim][Tf2N]. However, monomer conversion in vinyl‐functionalized IL monomers is much more dependent on the nature of the nonpolymerizable group. ATR‐FTIR analysis and molecular simulations of these monomers and monomer mixtures identified the presence of multiple intermolecular interactions (e.g., π–π stacking, IL aggregation) that contribute to the polymerization behaviors of these systems. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem.
2018 ,56 , 2364–2375