skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Neutron imaging for paleontology
X-ray radiography and computed tomography (CT) reveal hidden subsurface features within fossil specimens embedded in matrix. With X-rays, distinguishing features from the background (i.e., contrast) results from sample density and atomic X-ray attenuation—fundamental properties of the sample. However, even high energy X-rays may poorly resolve hard and soft tissue structures when the matrix has similar density or X-ray attenuation to the fossil. Here, neutron radiography and neutron tomography complement X-ray imaging, as the source of contrast comes instead from how a neutron beam interacts with the sample's atomic nuclei. The contrast is highly nonlinear across the periodic table, and so researchers can see enhanced contrast between adjacent features when X-ray imaging could not. As the signal source is completely different than X-ray imaging, some intuition from X-rays must be discarded. For instance, neutrons quite easily pass through lead, but are blocked by hydrogen. Since neutron imaging is uncommon within paleontology, we introduce this exciting technology at a high level with an emphasis on applications to paleontology. We cover some basic physics underlying neutron imaging, where one can perform such experiments, and sample considerations. The neutron source, concepts of beam flux, and image resolution will also be covered. As neutron imaging typically complements X-ray imaging, we discuss how to digitally combine modalities for segmentation and inference. We present examples of how neutron imaging informed fossil descriptions. This includes the skull of a Paleocene mammal Tetraclaenodon from New Mexico and a variety of Permian vertebrate specimens from Richards Spur, Oklahoma and imaged at the DINGO nuclear imaging facility in Australia. Though neutron sources will always be difficult to access, we aim to assist interested researchers considering this exciting imaging technology for their paleontology research.  more » « less
Award ID(s):
1654952
PAR ID:
10333121
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Journal of Vertebrate Paleontology, Program and Abstracts
Volume:
2021
Page Range / eLocation ID:
134
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We are developing an X-ray source for radiography of high-energy density (HED) experiments by passing a picosecond, relativistic laser beam through an underdense plasma to generate a relativistic beam of electrons. These electrons, in turn, generate bright, (1010 photon/keV/sr), high energy (10 keV - 1 MeV) X-rays. Over the years, this X-ray platform has been demonstrated on the Titan, Omega EP, and NIF-ARC lasers. This paper gives the present state of the field and argues that the platform has reached a level of maturity where the X-rays produced using this novel platform have the potential to find radiographic applications in a broad range of fields. Index Terms—X-ray, High Energy Density Science (HEDS), Self-Modulated Plasma Instability, NIF, OMEGA, Backlighter 
    more » « less
  2. Abstract: Coded aperture X-ray computed tomography (CT) has the potential to revolutionize X-ray tomography systems in medical imaging and air and rail transit security - both areas of global importance. It allows either a reduced set of measurements in X-ray CT without degrada- tion in image reconstruction, or measure multiplexed X-rays to simplify the sensing geometry. Measurement reduction is of particular interest in medical imaging to reduce radiation, and airport security often imposes practical constraints leading to limited angle geometries. Coded aperture compressive X-ray CT places a coded aperture pattern in front of the X-ray source in order to obtain patterned projections onto a detector. Compressive sensing (CS) reconstruction algorithms are then used to recover the image. To date, the coded illumination patterns used in conventional CT systems have been random. This paper addresses the code optimization prob- lem for general tomography imaging based on the point spread function (PSF) of the system, which is used as a measure of the sensing matrix quality which connects to the restricted isom- etry property (RIP) and coherence of the sensing matrix. The methods presented are general, simple to use, and can be easily extended to other imaging systems. Simulations are presented where the peak signal to noise ratios (PSNR) of the reconstructed images using optimized coded apertures exhibit significant gain over those attained by random coded apertures. Additionally, results using real X-ray tomography projections are presented. 
    more » « less
  3. Abstract: Coded aperture X-ray computed tomography (CT) has the potential to revolutionize X-ray tomography systems in medical imaging and air and rail transit security - both areas of global importance. It allows either a reduced set of measurements in X-ray CT without degrada- tion in image reconstruction, or measure multiplexed X-rays to simplify the sensing geometry. Measurement reduction is of particular interest in medical imaging to reduce radiation, and airport security often imposes practical constraints leading to limited angle geometries. Coded aperture compressive X-ray CT places a coded aperture pattern in front of the X-ray source in order to obtain patterned projections onto a detector. Compressive sensing (CS) reconstruction algorithms are then used to recover the image. To date, the coded illumination patterns used in conventional CT systems have been random. This paper addresses the code optimization prob- lem for general tomography imaging based on the point spread function (PSF) of the system, which is used as a measure of the sensing matrix quality which connects to the restricted isom- etry property (RIP) and coherence of the sensing matrix. The methods presented are general, simple to use, and can be easily extended to other imaging systems. Simulations are presented where the peak signal to noise ratios (PSNR) of the reconstructed images using optimized coded apertures exhibit significant gain over those attained by random coded apertures. Additionally, results using real X-ray tomography projections are presented. 
    more » « less
  4. The ever-increasing brightness of synchrotron radiation sources demands improved X-ray optics to utilize their capability for imaging and probing biological cells, nano-devices and functional matter on the nanometre scale with chemical sensitivity. Hard X-rays are ideal for high-resolution imaging and spectroscopic applications owing to their short wavelength, high penetrating power and chemical sensitivity. The penetrating power that makes X-rays useful for imaging also makes focusing them technologically challenging. Recent developments in layer deposition techniques have enabled the fabrication of a series of highly focusing X-ray lenses, known as wedged multi-layer Laue lenses. Improvements to the lens design and fabrication technique demand an accurate, robust,in situand at-wavelength characterization method. To this end, a modified form of the speckle tracking wavefront metrology method has been developed. The ptychographic X-ray speckle tracking method is capable of operating with highly divergent wavefields. A useful by-product of this method is that it also provides high-resolution and aberration-free projection images of extended specimens. Three separate experiments using this method are reported, where the ray path angles have been resolved to within 4 nrad with an imaging resolution of 45 nm (full period). This method does not require a high degree of coherence, making it suitable for laboratory-based X-ray sources. Likewise, it is robust to errors in the registered sample positions, making it suitable for X-ray free-electron laser facilities, where beam-pointing fluctuations can be problematic for wavefront metrology. 
    more » « less
  5. An x-ray Fresnel diffractive radiography platform was designed for use at the National Ignition Facility. It will enable measurements of micron-scale changes in the density gradients across an interface between isochorically heated warm dense matter materials, the evolution of which is driven primarily through thermal conductivity and mutual diffusion. We use 4.75 keV Ti K-shell x-ray emission to heat a 1000 μm diameter plastic cylinder, with a central 30 μm diameter channel filled with liquid D2, up to 8 eV. This leads to a cylindrical implosion of the liquid D2 column, compressing it to ∼2.3 g/cm3. After pressure equilibration, the location of the D2/plastic interface remains steady for several nanoseconds, which enables us to track density gradient changes across the material interface with high precision. For radiography, we use Cu He-α x rays at 8.3 keV. Using a slit aperture of only 1 μm width increases the spatial coherence of the source, giving rise to significant diffraction features in the radiography signal, in addition to the refraction enhancement, which further increases its sensitivity to density scale length changes at the D2/plastic interface. 
    more » « less