skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Background Splitting: Finding Rare Classes in a Sea of Background
Award ID(s):
1908727
PAR ID:
10333152
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Conference on Computer Vision and Pattern Recognition (CVPR)
Page Range / eLocation ID:
8039 to 8048
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. Conventional holographic tensor networks can be described as toy holographic maps constructed from many small linear maps acting in a spatially local way, all connected together with “background entanglement”, i.e. links of a fixed state, often the maximally entangled state. However, these constructions fall short of modeling real holographic maps. One reason is that their “areas” are trivial, taking the same value for all states, unlike in gravity where the geometry is dynamical. Recently, new constructions have ameliorated this issue by adding degrees of freedom that “live on the links”. This makes areas non-trivial, equal to the background entanglement piece plus a new positive piece that depends on the state of the link degrees of freedom. Nevertheless, this still has the downside that there is background entanglement, and hence it only models relatively limited code subspaces in which every area has a definite minimum value. In this note, we simply point out that a version of these constructions goes one step further: they can be background independent, with no background entanglement in the holographic map. This is advantageous because it allows tensor networks to model holographic maps for larger code subspaces. In addition to pointing this out, we address some subtleties involved in making it work. 
    more » « less