skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Circulating Exosomal microRNAs as Predictive Biomarkers of Neoadjuvant Chemotherapy Response in Breast Cancer
Background: Neoadjuvant chemotherapy (NACT) is an increasingly used approach for treatment of breast cancer. The pathological complete response (pCR) is considered a good predictor of disease-specific survival. This study investigated whether circulating exosomal microRNAs could predict pCR in breast cancer patients treated with NACT. Method: Plasma samples of 20 breast cancer patients treated with NACT were collected prior to and after the first cycle. RNA sequencing was used to determine microRNA profiling. The Cancer Genome Atlas (TCGA) was used to explore the expression patterns and survivability of the candidate miRNAs, and their potential targets based on the expression levels and copy number variation (CNV) data. Results: Three miRNAs before that NACT (miR-30b, miR-328 and miR-423) predicted pCR in all of the analyzed samples. Upregulation of miR-127 correlated with pCR in triple-negative breast cancer (TNBC). After the first NACT dose, pCR was predicted by exo-miR-141, while miR-34a, exo-miR182, and exo-miR-183 predicted non-pCR. A significant correlation between the candidate miRNAs and the overall survival, subtype, and metastasis in breast cancer, suggesting their potential role as predictive biomarkers of pCR. Conclusions: If the miRNAs identified in this study are validated in a large cohort of patients, they might serve as predictive non-invasive liquid biopsy biomarkers for monitoring pCR to NACT in breast cancer.  more » « less
Award ID(s):
1827066
PAR ID:
10333216
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Current Oncology
Volume:
29
Issue:
2
ISSN:
1718-7729
Page Range / eLocation ID:
613 to 630
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Biomarkers predictive of drug-specific outcomes are important tools for personalized medicine. In this study, we present an integrative analysis to identify miRNAs that are predictive of drug-specific survival outcome in cancer. Using the clinical data from TCGA, we defined subsets of cancer patients who suffered from the same cancer and received the same drug treatment, which we call cancer-drug groups. We then used the miRNA expression data in TCGA to evaluate each miRNA’s ability to predict the survival outcome of patients in each cancer-drug group. As a result, the identified miRNAs are predictive of survival outcomes in a cancer-specific and drug-specific manner. Notably, most of the drug-specific miRNA survival markers and their target genes showed consistency in terms of correlations in their expression and their correlations with survival. Some of the identified miRNAs were supported by published literature in contexts of various cancers. We explored several additional breast cancer datasets that provided miRNA expression and survival data, and showed that our drug-specific miRNA survival markers for breast cancer were able to effectively stratify the prognosis of patients in those additional datasets. Together, this analysis revealed drug-specific miRNA markers for cancer survival, which can be promising tools toward personalized medicine. 
    more » « less
  2. Breast cancer treatment can be improved with biomarkers for early detection and individualized therapy. A set of 86 microRNAs (miRNAs) were identified to separate breast cancer tumors from normal breast tissues (n = 52) with an overall accuracy of 90.4%. Six miRNAs had concordant expression in both tumors and breast cancer patient blood samples compared with the normal control samples. Twelve miRNAs showed concordant expression in tumors vs. normal breast tissues and patient survival (n = 1093), with seven as potential tumor suppressors and five as potential oncomiRs. From experimentally validated target genes of these 86 miRNAs, pan-sensitive and pan-resistant genes with concordant mRNA and protein expression associated with in-vitro drug response to 19 NCCN-recommended breast cancer drugs were selected. Combined with in-vitro proliferation assays using CRISPR-Cas9/RNAi and patient survival analysis, MEK inhibitors PD19830 and BRD-K12244279, pilocarpine, and tremorine were discovered as potential new drug options for treating breast cancer. Multi-omics biomarkers of response to the discovered drugs were identified using human breast cancer cell lines. This study presented an artificial intelligence pipeline of miRNA-based discovery of biomarkers, therapeutic targets, and repositioning drugs that can be applied to many cancer types. 
    more » « less
  3. There is currently no gene expression assay that can assess if premalignant lesions will develop into invasive breast cancer. This study sought to identify biomarkers for selecting patients with a high potential for developing invasive carcinoma in the breast with normal histology, benign lesions, or premalignant lesions. A set of 26-gene mRNA expression profiles were used to identify invasive ductal carcinomas from histologically normal tissue and benign lesions and to select those with a higher potential for future cancer development (ADHC) in the breast associated with atypical ductal hyperplasia (ADH). The expression-defined model achieved an overall accuracy of 94.05% (AUC = 0.96) in classifying invasive ductal carcinomas from histologically normal tissue and benign lesions (n = 185). This gene signature classified cancer development in ADH tissues with an overall accuracy of 100% (n = 8). The mRNA expression patterns of these 26 genes were validated using RT-PCR analyses of independent tissue samples (n = 77) and blood samples (n = 48). The protein expression of PBX2 and RAD52 assessed with immunohistochemistry were prognostic of breast cancer survival outcomes. This signature provided significant prognostic stratification in The Cancer Genome Atlas breast cancer patients (n = 1100), as well as basal-like and luminal A subtypes, and was associated with distinct immune infiltration and activities. The mRNA and protein expression of the 26 genes was associated with sensitivity or resistance to 18 NCCN-recommended drugs for treating breast cancer. Eleven genes had significant proliferative potential in CRISPR-Cas9/RNAi screening. Based on this gene expression signature, the VEGFR inhibitor ZM-306416 was discovered as a new drug for treating breast cancer. 
    more » « less
  4. Wei, Yanjie; Li, Min; Skums, Pavel; Cai, Zhipeng (Ed.)
    Novel discoveries of biomarkers predictive of drug-specific responses not only play a pivotal role in revealing the drug mechanisms in cancers, but are also critical to personalized medicine. In this study, we identified drug-specific biomarkers by integrating protein expression data, drug treatment data and survival outcome of 7076 patients from The Cancer Genome Atlas (TCGA). We first defined cancer-drug groups, where each cancer-drug group contains patients with the same cancer and treated with the same drug. For each protein, we stratified the patients in each cancer-drug group by high or low expression of the protein, and applied log-rank test to examine whether the stratified patients show significant survival difference. We examined 336 proteins in 98 cancer-drug groups and identified 65 protein-cancer-drug combinations involving 55 unique proteins, where the protein expression levels are predictive of drug-specific survival outcomes. Some of the identified proteins were supported by published literature. Using the gene expression data from TCGA, we found the mRNA expression of ∼11% of the drug-specific proteins also showed significant correlation with drug-specific survival, and most of these drug-specific proteins and their corresponding genes are strongly correlated. 
    more » « less
  5. The majority of lung cancer patients are diagnosed with metastatic disease. This study identified a set of 73 microRNAs (miRNAs) that classified lung cancer tumors from normal lung tissues with an overall accuracy of 96.3% in the training patient cohort (n = 109) and 91.7% in unsupervised classification and 92.3% in supervised classification in the validation set (n = 375). Based on association with patient survival (n = 1016), 10 miRNAs were identified as potential tumor suppressors (hsa-miR-144, hsa-miR-195, hsa-miR-223, hsa-miR-30a, hsa-miR-30b, hsa-miR-30d, hsa-miR-335, hsa-miR-363, hsa-miR-451, and hsa-miR-99a), and 4 were identified as potential oncogenes (hsa-miR-21, hsa-miR-31, hsa-miR-411, and hsa-miR-494) in lung cancer. Experimentally confirmed target genes were identified for the 73 diagnostic miRNAs, from which proliferation genes were selected from CRISPR-Cas9/RNA interference (RNAi) screening assays. Pansensitive and panresistant genes to 21 NCCN-recommended drugs with concordant mRNA and protein expression were identified. DGKE and WDR47 were found with significant associations with responses to both systemic therapies and radiotherapy in lung cancer. Based on our identified miRNA-regulated molecular machinery, an inhibitor of PDK1/Akt BX-912, an anthracycline antibiotic daunorubicin, and a multi-targeted protein kinase inhibitor midostaurin were discovered as potential repositioning drugs for treating lung cancer. These findings have implications for improving lung cancer diagnosis, optimizing treatment selection, and discovering new drug options for better patient outcomes. 
    more » « less