Scorpion toxins are thought to have originated from ancestral housekeeping genes that underwent diversification and neofunctionalization, as a result of positive selection. Our understanding of the evolutionary origin of these peptides is hindered by the patchiness of existing taxonomic sampling. While recent studies have shown phylogenetic inertia in some scorpion toxins at higher systematic levels, evolutionary dynamics of toxins among closely related taxa remain unexplored. In this study, we used new and previously published transcriptomic resources to assess evolutionary relationships of closely related scorpions from the family Hadruridae and their toxins. In addition, we surveyed the incidence of scorpine-like peptides (SLP, a type of potassium channel toxin), which were previously known from 21 scorpion species. We demonstrate that scorpine-like peptides exhibit gene duplications. Our molecular analyses demonstrate that only eight sites of two SLP copies found in scorpions are evolving under positive selection, with more sites evolving under negative selection, in contrast to previous findings. These results show evolutionary conservation in toxin diversity at shallow taxonomic scale.
more »
« less
Hadrurid Scorpion Toxins: Evolutionary Conservation and Selective Pressures
Scorpion toxins are thought to have originated from ancestral housekeeping genes that underwent diversification and neofunctionalization, as a result of positive selection. Our understanding of the evolutionary origin of these peptides is hindered by the patchiness of existing taxonomic sampling. While recent studies have shown phylogenetic inertia in some scorpion toxins at higher systematic levels, evolutionary dynamics of toxins among closely related taxa remain unexplored. In this study, we used new and previously published transcriptomic resources to assess evolutionary relationships of closely related scorpions from the family Hadruridae and their toxins. In addition, we surveyed the incidence of scorpine-like peptides (SLP, a type of potassium channel toxin), which were previously known from 21 scorpion species. We demonstrate that scorpine-like peptides exhibit gene duplications. Our molecular analyses demonstrate that only eight sites of two SLP copies found in scorpions are evolving under positive selection, with more sites evolving under negative selection, in contrast to previous findings. These results show evolutionary conservation in toxin diversity at shallow taxonomic scale.
more »
« less
- Award ID(s):
- 1754030
- PAR ID:
- 10333256
- Date Published:
- Journal Name:
- Toxins
- Volume:
- 11
- Issue:
- 11
- ISSN:
- 2072-6651
- Page Range / eLocation ID:
- 637
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Background The explosive radiation and diversification of the advanced snakes (superfamily Colubroidea) was associated with changes in all aspects of the shared venom system. Morphological changes included the partitioning of the mixed ancestral glands into two discrete glands devoted for production of venom or mucous respectively, as well as changes in the location, size and structural elements of the venom-delivering teeth. Evidence also exists for homology among venom gland toxins expressed across the advanced snakes. However, despite the evolutionary novelty of snake venoms, in-depth toxin molecular evolutionary history reconstructions have been mostly limited to those types present in only two front-fanged snake families, Elapidae and Viperidae. To have a broader understanding of toxins shared among extant snakes, here we first sequenced the transcriptomes of eight taxonomically diverse rear-fanged species and four key viperid species and analysed major toxin types shared across the advanced snakes. Results Transcriptomes were constructed for the following families and species: Colubridae - Helicops leopardinus , Heterodon nasicus , Rhabdophis subminiatus ; Homalopsidae – Homalopsis buccata ; Lamprophiidae - Malpolon monspessulanus , Psammophis schokari , Psammophis subtaeniatus , Rhamphiophis oxyrhynchus ; and Viperidae – Bitis atropos , Pseudocerastes urarachnoides , Tropidolaeumus subannulatus , Vipera transcaucasiana . These sequences were combined with those from available databases of other species in order to facilitate a robust reconstruction of the molecular evolutionary history of the key toxin classes present in the venom of the last common ancestor of the advanced snakes, and thus present across the full diversity of colubroid snake venoms. In addition to differential rates of evolution in toxin classes between the snake lineages, these analyses revealed multiple instances of previously unknown instances of structural and functional convergences. Structural convergences included: the evolution of new cysteines to form heteromeric complexes, such as within kunitz peptides (the beta-bungarotoxin trait evolving on at least two occasions) and within SVMP enzymes (the P-IIId trait evolving on at least three occasions); and the C-terminal tail evolving on two separate occasions within the C-type natriuretic peptides, to create structural and functional analogues of the ANP/BNP tailed condition. Also shown was that the de novo evolution of new post-translationally liberated toxin families within the natriuretic peptide gene propeptide region occurred on at least five occasions, with novel functions ranging from induction of hypotension to post-synaptic neurotoxicity. Functional convergences included the following: multiple occasions of SVMP neofunctionalised in procoagulant venoms into activators of the clotting factors prothrombin and Factor X; multiple instances in procoagulant venoms where kunitz peptides were neofunctionalised into inhibitors of the clot destroying enzyme plasmin, thereby prolonging the half-life of the clots formed by the clotting activating enzymatic toxins; and multiple occasions of kunitz peptides neofunctionalised into neurotoxins acting on presynaptic targets, including twice just within Bungarus venoms. Conclusions We found novel convergences in both structural and functional evolution of snake toxins. These results provide a detailed roadmap for future work to elucidate predator–prey evolutionary arms races, ascertain differential clinical pathologies, as well as documenting rich biodiscovery resources for lead compounds in the drug design and discovery pipeline.more » « less
-
Fay, Justin C. (Ed.)Killer toxins are extracellular antifungal proteins that are produced by a wide variety of fungi, including Saccharomyces yeasts. Although many Saccharomyces killer toxins have been previously identified, their evolutionary origins remain uncertain given that many of these genes have been mobilized by double-stranded RNA (dsRNA) viruses. A survey of yeasts from the Saccharomyces genus has identified a novel killer toxin with a unique spectrum of activity produced by Saccharomyces paradoxus . The expression of this killer toxin is associated with the presence of a dsRNA totivirus and a satellite dsRNA. Genetic sequencing of the satellite dsRNA confirmed that it encodes a killer toxin with homology to the canonical ionophoric K1 toxin from Saccharomyces cerevisiae and has been named K1-like (K1L). Genomic homologs of K1L were identified in six non- Saccharomyces yeast species of the Saccharomycotina subphylum, predominantly in subtelomeric regions of the genome. When ectopically expressed in S . cerevisiae from cloned cDNAs, both K1L and its homologs can inhibit the growth of competing yeast species, confirming the discovery of a family of biologically active K1-like killer toxins. The sporadic distribution of these genes supports their acquisition by horizontal gene transfer followed by diversification. The phylogenetic relationship between K1L and its genomic homologs suggests a common ancestry and gene flow via dsRNAs and DNAs across taxonomic divisions. This appears to enable the acquisition of a diverse arsenal of killer toxins by different yeast species for potential use in niche competition.more » « less
-
The genus Calliophis is the most basal branch of the family Elapidae and several species in it have developed highly elongated venom glands. Recent research has shown that C. bivirgatus has evolved a seemingly unique toxin (calliotoxin) that produces spastic paralysis in their prey by acting on the voltage-gated sodium (NaV) channels. We assembled a transcriptome from C. bivirgatus to investigate the molecular characteristics of these toxins and the venom as a whole. We find strong confirmation that this genus produces the classic elapid eight-cysteine three-finger toxins, that δδ-elapitoxins (toxins that resemble calliotoxin) are responsible for a substantial portion of the venom composition, and that these toxins form a distinct clade within a larger, more diverse clade of C. bivirgatus three-finger toxins. This broader clade of C. bivirgatus toxins also contains the previously named maticotoxins and is somewhat closely related to cytotoxins from other elapids. However, the toxins from this clade that have been characterized are not themselves cytotoxic. No other toxins show clear relationships to toxins of known function from other species.more » « less
-
Abstract BackgroundMitochondrial genes and nuclear genes cooperate closely to maintain the functions of mitochondria, especially in the oxidative phosphorylation (OXPHOS) pathway. However, mitochondrial genes among arthropod lineages have dramatic evolutionary rate differences. Haplodiploid arthropods often show fast-evolving mitochondrial genes. One hypothesis predicts that the small effective population size of haplodiploid species could enhance the effect of genetic drift leading to higher substitution rates in mitochondrial and nuclear genes. Alternatively, positive selection or compensatory changes in nuclear OXPHOS genes could lead to the fast-evolving mitochondrial genes. However, due to the limited number of arthropod genomes, the rates of evolution for nuclear genes in haplodiploid species, besides hymenopterans, are largely unknown. To test these hypotheses, we used data from 76 arthropod genomes, including 5 independently evolved haplodiploid lineages, to estimate the evolutionary rates and patterns of gene family turnover of mitochondrial and nuclear genes. ResultsWe show that five haplodiploid lineages tested here have fast-evolving mitochondrial genes and fast-evolving nuclear genes related to mitochondrial functions, while nuclear genes not related to mitochondrion showed no significant evolutionary rate differences. Among hymenopterans, bees and ants show faster rates of molecular evolution in mitochondrial genes and mitochondrion-related nuclear genes than sawflies and wasps. With genome data, we also find gene family expansions and contractions in mitochondrion-related genes of bees and ants. ConclusionsOur results reject the small population size hypothesis in haplodiploid species. A combination of positive selection and compensatory changes could lead to the observed patterns in haplodiploid species. The elevated evolutionary rates in OXPHOS complex 2 genes of bees and ants suggest a unique evolutionary history of social hymenopterans.more » « less
An official website of the United States government

