Amyloid fibril formation is central to the etiology of a wide range of serious human diseases, such as Alzheimer’s disease and prion diseases. Despite an ever growing collection of amyloid fibril structures found in the Protein Data Bank (PDB) and numerous clinical trials, therapeutic strategies remain elusive. One contributing factor to the lack of progress on this challenging problem is incomplete understanding of the mechanisms by which these locally ordered protein aggregates self-assemble in solution. Many current models of amyloid deposition diseases posit that the most toxic species are oligomers that form either along the pathway to forming fibrilsmore »
This content will become publicly available on January 28, 2023
Characterizing Soluble Protein Aggregates Using Native Mass Spectrometry Coupled with Temperature-Controlled Electrospray Ionization and Size-Exclusion Chromatography
Characterization of soluble protein aggregates provides valuable information for revealing mechanisms of protein aggregation process and assessing the activity and safety of protein therapeutics. However, the noncovalent interaction, the transient nature and higher degree of structural heterogeneity of the soluble aggregation system hinders precise characterization at the molecular level. Here, we describe methods using native mass spectrometry coupled with temperature-control electrospray ionization and size-exclusion chromatography to monitor the aggregation process and profile the aggregates in detail.
- Editors:
- Garcia Fruitós, E.; Arís Giralt, A.
- Award ID(s):
- 1709552
- Publication Date:
- NSF-PAR ID:
- 10333344
- Journal Name:
- Methods in molecular biology
- Volume:
- 2406
- Page Range or eLocation-ID:
- 455-468
- ISSN:
- 1064-3745
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Amyloids are fibrous cross-β protein aggregates that are capable of proliferation via nucleated polymerization. Amyloid conformation likely represents an ancient protein fold and is linked to various biological or pathological manifestations. Self-perpetuating amyloid-based protein conformers provide a molecular basis for transmissible (infectious or heritable) protein isoforms, termed prions. Amyloids and prions, as well as other types of misfolded aggregated proteins are associated with a variety of devastating mammalian and human diseases, such as Alzheimer's, Parkinson's and Huntington's diseases, transmissible spongiform encephalopathies (TSEs), amyotrophic lateral sclerosis (ALS) and transthyretinopathies. In yeast and fungi, amyloid-based prions control phenotypically detectable heritable traits. Simplicitymore »
-
Abstract The founding principles of protein folding introduced by Christian Anfinsen, together with the numerous mechanistic investigations that followed, assume that protein folding is a thermodynamically controlled process. On the other hand, this review underscores the fact that thermodynamic control is far from being the norm in protein folding, as long as one considers an extended chemical-potential landscape encompassing aggregates, in addition to native, unfolded and intermediate states. Here, we highlight the key role of kinetic trapping of the protein native state relative to unfolded, intermediate and, most importantly, aggregated states. We propose that kinetic trapping serves an important rolemore »
-
Aggregation of misfolded oligomeric amyloid-beta (Aβ) peptides on lipid membranes has been identified as a primary event in Alzheimer's pathogenesis. However, the structural and dynamical features of this membrane assisted Aβ aggregation have not been well characterized. The microscopic characterization of dynamic molecular-level interactions in peptide aggregation pathways has been challenging both computationally and experimentally. In this work, we explore differential patterns of membrane-induced Aβ 16–22 (K–L–V–F–F–A–E) aggregation from the microscopic perspective of molecular interactions. Physics-based coarse-grained molecular dynamics (CG-MD) simulations were employed to investigate the effect of lipid headgroup charge – zwitterionic (1-palmitoyl-2-oleoyl- sn-glycero -3-phosphocholine: POPC) and anionic (1-palmitoyl-2-oleoyl-more »
-
During the past decade, cellulose nanofibrils (CNFs) have shown tremendous potential as a building block to fabricate new advanced materials that are both biocompatible and biodegradable. The excellent mechanical properties of the individual CNF can be transferred to macroscale fibers through careful control in hydrodynamic alignment and assembly processes. The optimization of such processes relies on the understanding of nanofibril dynamics during the process, which in turn requires in situ characterization. Here, we use a shear-free mixing experiment combined with scanning small-angle X-ray scattering (scanning-SAXS) to provide time-resolved nanoscale kinetics during the in situ assembly of dispersed cellulose nanofibrils (CNFs)more »