As blue intensity (BI) methods are increasingly employed to generate temperature-sensitive tree-ring records around the globe, the influence of intra-site variation in elevation on climate-growth relationships for BI parameters remains largely unresolved. Here, we develop six latewood blue intensity (LWBI) chronologies along an elevational gradient for two montane conifer species, Abies concolor var. concolor (Gordon & Glend.) Lindl. Ex Hilderb and Picea engelmannii Parry ex Engelm., growing in the arid southwestern United States. In this first documented study to examine the climate response of LWBI from A. concolor, we find positive, significant (p < 0.05) correlations between the LWBI chronology from the highest elevation plot and spring–summer temperatures (April–August, r > 0.46). Moreover, the positive temperature response of A. concolor is generally stronger and more temporally stable than for P. engelmannii across varying seasonal windows. In comparing the differences in climate response across species and elevation, we document distinct clinal relationships between the temperature response of LWBI for A. concolor, where both the strength and temporal stability of the positive temperature signal increases with elevation. Meanwhile, the mid-elevation P. engelmannii demonstrate the highest climate sensitivity. As such, our findings contribute to a more comprehensive understanding of how elevation influences the type and strength of the climatic information embedded within the LWBI parameter from arid, montane conifers growing near their historical range margins.
more »
« less
Evaluating the dendroclimatological potential of blue intensity on multiple conifer species from Tasmania and New Zealand
Abstract. We evaluate a range of blue intensity (BI) tree-ringparameters in eight conifer species (12 sites) from Tasmania and New Zealandfor their dendroclimatic potential, and as surrogate wood anatomicalproxies. Using a dataset of ca. 10–15 trees per site, we measured earlywoodmaximum blue intensity (EWB), latewood minimum blue intensity (LWB), and theassociated delta blue intensity (DB) parameter for dendrochronologicalanalysis. No resin extraction was performed, impacting low-frequency trends.Therefore, we focused only on the high-frequency signal by detrending alltree-ring and climate data using a 20-year cubic smoothing spline. All BIparameters express low relative variance and weak signal strength comparedto ring width. Correlation analysis and principal component regressionexperiments identified a weak and variable climate response for mostring-width chronologies. However, for most sites, the EWB data, despite weaksignal strength, expressed strong coherence with summer temperatures.Significant correlations for LWB were also noted, but the sign of therelationship for most species is opposite to that reported for all coniferspecies in the Northern Hemisphere. DB results were mixed but performedbetter for the Tasmanian sites when combined through principal componentregression methods than for New Zealand. Using the fullmulti-species/parameter network, excellent summer temperature calibrationwas identified for both Tasmania and New Zealand ranging from 52 % to78 % explained variance for split periods (1901–1950/1951–1995), withequally robust independent validation (coefficient of efficiency = 0.41 to0.77). Comparison of the Tasmanian BI reconstruction with a quantitativewood anatomical (QWA) reconstruction shows that these parameters recordessentially the same strong high-frequency summer temperature signal.Despite these excellent results, a substantial challenge exists with thecapture of potential secular-scale climate trends. Although DB, band-pass,and other signal processing methods may help with this issue, substantiallymore experimentation is needed in conjunction with comparative analysis withring density and QWA measurements.
more »
« less
- Award ID(s):
- 2102790
- PAR ID:
- 10333445
- Date Published:
- Journal Name:
- Biogeosciences
- Volume:
- 18
- Issue:
- 24
- ISSN:
- 1726-4189
- Page Range / eLocation ID:
- 6393 to 6421
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This is the first study to generate and analyze the climate signal in blue intensity (BI) tree-ring chronologies from Alaska yellow-cedar (Callitropsis nootkatensis (D. Don) Oerst. ex D.P. Little). The latewood BI chronology shows a much stronger temperature sensitivity than ring width and can thus provide information on past climate. The well-replicated BI chronology exhibits a positive January–August mean maximum temperature signal for 1900–1975, after which it loses temperature sensitivity following the 1976–1977 shift in northeastern Pacific climate. The positive temperature response appears to recover and remains strong for the most recent decades, but the coming years will continue to test this observation. This temporary loss of temperature sensitivity from about 1976 to 1999 is not evident in ring width or in a change in forest health but is consistent with prior work linking cedar decline to warming. A confounding factor is the uncertain influence of a shift in color variation from the heartwood–sapwood boundary. Future expansion of the yellow-cedar BI network and further investigation of the influence of the heartwood–sapwood transitions in the BI signal will lead to a better understanding of the utility of this species as a climate proxy.more » « less
-
In north-western North America, the so-called divergence problem (DP) is expressed in tree ring width (RW) as an unstable temperature signal in recent decades. Maximum latewood density (MXD), from the same region, shows minimal evidence of DP. While MXD is a superior proxy for summer temperatures, there are very few long MXD records from North America. Latewood blue intensity (LWB) measures similar wood properties as MXD, expresses a similar climate response, is much cheaper to generate and thereby could provide the means to profoundly expand the extant network of temperature sensitive tree-ring (TR) chronologies in North America. In this study, LWB is measured from 17 white spruce sites ( Picea glauca) in south-western Yukon to test whether LWB is immune to the temporal calibration instabilities observed in RW. A number of detrending methodologies are examined. The strongest calibration results for both RW and LWB are consistently returned using age-dependent spline (ADS) detrending within the signal-free (SF) framework. RW data calibrate best with June–July maximum temperatures (Tmax), explaining up to 28% variance, but all models fail validation and residual analysis. In comparison, LWB calibrates strongly (explaining 43–51% of May–August Tmax) and validates well. The reconstruction extends to 1337 CE, but uncertainties increase substantially before the early 17th century because of low replication. RW-, MXD- and LWB-based summer temperature reconstructions from the Gulf of Alaska, the Wrangell Mountains and Northern Alaska display good agreement at multi-decadal and higher frequencies, but the Yukon LWB reconstruction appears potentially limited in its expression of centennial-scale variation. While LWB improves dendroclimatic calibration, future work must focus on suitably preserved sub-fossil material to increase replication prior to 1650 CE.more » « less
-
Abstract Summer temperatures across eastern North America (hereafter East) will soon reach a level consistently above any observation experienced during the instrumental period. Increasing temperatures will have negative impacts on natural (e.g., water, plant and animal communities) and human (e.g., health, infrastructure, economies) systems upon which the large and growing centres of human population across the region depend. Within the network of Northern Hemisphere tree‐ring temperature proxy records, one of the most obvious geographic holes is the East, where few temperature‐sensitive proxies exist. Here we present the first steps towards building a network of temperature‐sensitive proxy records across the East using blue light intensity (BI) methods applied to the tree rings of multiple temperature sensitive tree species situated from North Carolina to Maine, USA. Our overall objective is to report on the most viable species for BI analysis across different regions of the East (e.g., Southeast US, Midwest US, Northeast US/Canadian Maritimes) by exploring temporal (e.g., since ca. 1900) and spatial relationships between instrumental temperatures and BI metrics. We found BI to be a strong predictor of March–October mean air temperature (R2= 0.61) across the Northeast US/eastern Canada, and Sep‐Oct maximum air temperature (R2= 0.42) across the Southeast US. Of all species tested,Tsuga canadensisandPicea rubenscontained the strongest BI temperature signal. Adding more BI sites from these and potentially other species, as well as inclusion of other temperature proxies (e.g., ring widths) will allow for the development of a skilful broad‐scale and long‐term temperature field reconstruction across the East.more » « less
-
null (Ed.)Abstract Tree-ring chronologies underpin the majority of annually-resolved reconstructions of Common Era climate. However, they are derived using different datasets and techniques, the ramifications of which have hitherto been little explored. Here, we report the results of a double-blind experiment that yielded 15 Northern Hemisphere summer temperature reconstructions from a common network of regional tree-ring width datasets. Taken together as an ensemble, the Common Era reconstruction mean correlates with instrumental temperatures from 1794–2016 CE at 0.79 ( p < 0.001), reveals summer cooling in the years following large volcanic eruptions, and exhibits strong warming since the 1980s. Differing in their mean, variance, amplitude, sensitivity, and persistence, the ensemble members demonstrate the influence of subjectivity in the reconstruction process. We therefore recommend the routine use of ensemble reconstruction approaches to provide a more consensual picture of past climate variability.more » « less
An official website of the United States government

