skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The DOI auto-population feature in the Public Access Repository (PAR) will be unavailable from 4:00 PM ET on Tuesday, July 8 until 4:00 PM ET on Wednesday, July 9 due to scheduled maintenance. We apologize for the inconvenience caused.


Title: A Search for Correlated Low-energy Electron Antineutrinos in KamLAND with Gamma-Ray Bursts
Abstract We present the results of a time-coincident event search for low-energy electron antineutrinos in the KamLAND detector with gamma-ray bursts (GRBs) from the Gamma-ray Coordinates Network and Fermi Gamma-ray Burst Monitor. Using a variable coincidence time window of ±500 s plus the duration of each GRB, no statistically significant excess above the background is observed. We place the world’s most stringent 90% confidence level upper limit on the electron antineutrino fluence below 17.5 MeV. Assuming a Fermi–Dirac neutrino energy spectrum from the GRB source, we use the available redshift data to constrain the electron antineutrino luminosity and effective temperature.  more » « less
Award ID(s):
2012964 2110720
PAR ID:
10333500
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
927
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
69
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present Fermi Gamma-ray Burst Monitor (Fermi-GBM) and Swift Burst Alert Telescope (Swift-BAT) searches for gamma-ray/X-ray counterparts to gravitational-wave (GW) candidate events identified during the third observing run of the Advanced LIGO and Advanced Virgo detectors. Using Fermi-GBM onboard triggers and subthreshold gamma-ray burst (GRB) candidates found in the Fermi-GBM ground analyses, the Targeted Search and the Untargeted Search, we investigate whether there are any coincident GRBs associated with the GWs. We also search the Swift-BAT rate data around the GW times to determine whether a GRB counterpart is present. No counterparts are found. Using both the Fermi-GBM Targeted Search and the Swift-BAT search, we calculate flux upper limits and present joint upper limits on the gamma-ray luminosity of each GW. Given these limits, we constrain theoretical models for the emission of gamma rays from binary black hole mergers. 
    more » « less
  2. A thermal component is suggested to be the physical composition of the ejecta of several bright gamma-ray bursts (GRBs). Such a thermal component is discovered in the time-integrated spectra of several short GRBs as well as long GRBs. In this work, we present a comprehensive analysis of ten very short GRBs detected by Fermi Gamma-Ray Burst Monitor to search for the thermal component. We found that both the resultant low-energy spectral index and the peak energy in each GRB imply a common hard spectral feature, which is in favor of the main classification of the short/hard versus long/soft dichotomy in the GRB duration. We also found moderate evidence for the detection of thermal component in eight GRBs. Although such a thermal component contributes a small proportion of the global prompt gamma-ray emission, the modified thermal-radiation mechanism could enhance the proportion significantly, such as in subphotospheric dissipation. 
    more » « less
  3. ABSTRACT We report on detailed multiwavelength observations and analysis of the very bright and long GRB 210619B, detected by the Atmosphere-Space Interactions Monitor installed on the International Space Station and the Gamma-ray Burst Monitor (GBM) on-board the Fermi mission. Our main goal is to understand the radiation mechanisms and jet composition of GRB 210619B. With a measured redshift of z = 1.937, we find that GRB 210619B falls within the 10 most luminous bursts observed by Fermi so far. The energy-resolved prompt emission light curve of GRB 210619B exhibits an extremely bright hard emission pulse followed by softer/longer emission pulses. The low-energy photon index (αpt) values obtained using the time-resolved spectral analysis of the burst suggest a transition between the thermal (during harder pulse) to non-thermal (during softer pulse) outflow. We examine the correlation between spectral parameters and find that both peak energy and αpt exhibit the flux tracking pattern. The late time broad-band photometric data set can be explained within the framework of the external forward shock model with νm < νc < νx (where νm, νc, and νx are the synchrotron peak, cooling-break, and X-ray frequencies, respectively) spectral regime supporting a rarely observed hard electron energy index (p < 2). We find moderate values of host extinction of E(B − V) = 0.14 ± 0.01 mag for the small magellanic cloud extinction law. In addition, we also report late-time optical observations with the 10.4 m Gran Telescopio de Canarias placing deep upper limits for the host galaxy (z = 1.937), favouring a faint, dwarf host for the burst. 
    more » « less
  4. Abstract Very few detections have been made of optical flashes contemporaneous with prompt high-energy emission from a gamma-ray burst (GRB). In this work, we present and analyze light curves of GRB-associated optical flashes and afterglows from the Transiting Exoplanet Survey Satellite (TESS). Our sample consists of eight GRBs with arcsecond-level localizations from the X-Ray Telescope on board the Neil Gehrels Swift Observatory (Swift). For each burst, we characterize the prompt optical emission and any observed afterglow, and constrain physical parameters for four of these bursts using their TESS light curves. This work also presents a straightforward method to correct for TESS's cosmic-ray mitigation strategy on 20 s timescales, which allows us to estimate the “true” brightness of optical flashes associated with prompt GRB emission. We also highlight TESS’s continuous wide-field monitoring capability, which provides an efficient means of identifying optical emission from GRBs and characterizing early time afterglow light curves. Based on empirical detection rates from Swift and the Fermi Gamma-ray Space Telescope, up to 10 GRBs per year may fall within the contemporaneous TESS field of view. 
    more » « less
  5. Context.Dark gamma-ray bursts (GRBs) constitute a significant fraction of the GRB population. In this paper, we present a multi-wavelength analysis (both prompt emission and afterglow) of an intense (3.98  ×  10−5erg cm−2usingFermi-Gamma-Ray Burst Monitor) two-episodic GRB 150309A observed early on until ∼114 days post burst. Despite the strong gamma-ray emission, no optical afterglow was detected for this burst. However, we discovered near-infrared (NIR) afterglow (KS-band), ∼5.2 h post burst, with the CIRCE instrument mounted at the 10.4 m Gran Telescopio Canarias (hereafter, GTC). Aims.We aim to examine the characteristics of GRB 150309A as a dark burst and to constrain other properties using multi-wavelength observations. Methods.We usedFermiobservations of GRB 150309A to understand the prompt emission mechanisms and jet composition. We performed early optical observations using the BOOTES robotic telescope and late-time afterglow observations using the GTC. A potential faint host galaxy was also detected in the optical wavelength using the GTC. We modelled the potential host galaxy of GRB 150309A in order to explore the environment of the burst. Results.The time-resolved spectral analysis ofFermidata indicates a hybrid jet composition consisting of a matter-dominated fireball and magnetic-dominated Poynting flux. The GTC observations of the afterglow revealed that the counterpart of GRB 150309A was very red, withH − KS > 2.1 mag (95% confidence). The red counterpart was not discovered in any bluer filters ofSwiftUVOT/BOOTES, which would be indicative of a high redshift origin. Therefore we discarded this possibility based on multiple arguments, such as spectral analysis of the X-ray afterglow constrainz < 4.15 and a moderate redshift value obtained using the spectral energy distribution (SED) modelling of the potential galaxy. The broadband (X-ray to NIR bands) afterglow SED implies a very dusty host galaxy with a deeply embedded GRB (suggestingAV ≳ 35 mag). Conclusions.The environment of GRB 150309A demands a high extinction towards the line of sight. Demanding dust obscuration is the most probable origin of optical darkness as well as the very red afterglow of GRB 150309A. This result establishes GRB 150309A as the most extinguished GRB known to date. 
    more » « less