skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Promoting Instrument Development for New Research Avenues in Ocean Science: Opening the Black Box of Grazing
While recent research has provided increasing insight into ocean ecosystem functions and rapidly improving predictive ability, it has become clear that for some key processes, including grazing by zooplankton, there simply is no currently available instrumentation to quantify relevant stocks and rates, remotely or in situ . When measurement capacity is lacking, collaborative research between instrument manufacturers and researchers can bring us closer to addressing key knowledge gaps. By necessity, this high risk, high rewards research will require iterative steps from best case scenarios under highly controlled and often artificial laboratory conditions to empirical verification in complex in situ conditions with diverse biota. To illustrate our point, we highlight the example of zooplankton grazing in marine planktonic food webs. Grazing by single-celled zooplankton accounts for the majority of organic carbon loss from marine primary production but is still measured with logistically demanding, point-sample incubation methods that result in reproducible results but at insufficient resolution to adequately describe temporal and spatial dynamics of grazer induced impacts on primary production, export production and the annual cycle of marine plankton. We advance a collaborative research and development agenda to eliminate this knowledge gap. Resolving primary production losses through grazing is fundamental to a predictive understanding of the transfer of matter and energy through marine ecosystems, major reservoirs of the global carbon cycle.  more » « less
Award ID(s):
1736635
PAR ID:
10333559
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Frontiers in Marine Science
Volume:
8
ISSN:
2296-7745
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Marine picocyanobacteria are ubiquitous primary producers across the world’s oceans, and play a key role in the global carbon cycle. Recent evidence stemming from in situ investigations have shown that picocyanobacteria are able to sink out of the euphotic zone to depth, which has traditionally been associated with larger, mineral ballasted cells. The mechanisms behind the sinking of picocyanobacteria remain a point of contention, given that they are too small to sink on their own. To gain a mechanistic understanding of the potential role of picocyanobacteria in carbon export, we tested their ability to form “suspended” (5–60 μm) and “visible” (ca. > 0.1 mm) aggregates, as well as their production of transparent exopolymer particles (TEP)—which are a key component in the formation of marine aggregates. Additionally, we investigated if interactions with heterotrophic bacteria play a role in TEP production and aggregation in Prochlorococcus and Synechococcus by comparing xenic and axenic cultures. We observed TEP production and aggregation in batch cultures of axenic Synechococcus, but not in axenic Prochlorococcus. Heterotrophic bacteria enhanced TEP production as well as suspended and visible aggregate formation in Prochlorococcus, while in Synechococcus, aggregation was enhanced with no changes in TEP. Aggregation experiments using a natural plankton community dominated by picocyanobacteria resulted in aggregation only in the presence of the ballasting mineral kaolinite, and only when Synechococcus were in their highest seasonal abundance. Our results point to a different export potential between the two picocyanobacteria, which may be mediated by interactions with heterotrophic bacteria and presence of ballasting minerals. Further studies are needed to clarify the mechanistic role of bacteria in TEP production and aggregation of these picocyanobacteria. 
    more » « less
  2. Conway, T.; Fitzsimmons, J.; Middag, R; Noble, T.; Planquette, H. (Ed.)
    Because nitrogen availability limits primary production over much of the global ocean, understanding the controls on the marine nitrogen inventory and supply to the surface ocean is essential for understanding biological productivity and exchange of greenhouse gases with the atmosphere. Quantifying the ocean’s inputs, outputs, and internal cycling of nitrogen requires a variety of tools and approaches, including measurements of the nitrogen isotope ratio in organic and inorganic nitrogen species. The marine nitrogen cycle, which shapes nitrogen availability and speciation in the ocean, is linked to the elemental cycles of carbon, phosphorus, and trace elements. For example, the majority of nitrogen cycle oxidation and reduction reactions are mediated by enzymes that require trace metals for catalysis. Recent observations made through global-scale programs such as GEOTRACES have greatly expanded our knowledge of the marine nitrogen cycle. Though much work remains to be done, here we outline key advances in understanding the marine nitrogen cycle that have been achieved through these analyses, such as the distributions and rates of dinitrogen fixation, terrestrial nitrogen inputs, and nitrogen loss processes. 
    more » « less
  3. Abstract Iron is an essential nutrient for all microorganisms of the marine environment. Iron limitation of primary production has been well documented across a significant portion of the global surface ocean, but much less is known regarding the potential for iron limitation of the marine heterotrophic microbial community. In this work, we characterize the transcriptomic response of the heterotrophic bacterial community to iron additions in the California Current System, an eastern boundary upwelling system, to detect in situ iron stress of heterotrophic bacteria. Changes in gene expression in response to iron availability by heterotrophic bacteria were detected under conditions of high productivity when carbon limitation was relieved but when iron availability remained low. The ratio of particulate organic carbon to dissolved iron emerged as a biogeochemical proxy for iron limitation of heterotrophic bacteria in this system. Iron stress was characterized by high expression levels of iron transport pathways and decreased expression of iron-containing enzymes involved in carbon metabolism, where a majority of the heterotrophic bacterial iron requirement resides. Expression of iron stress biomarkers, as identified in the iron-addition experiments, was also detected in  situ. These results suggest iron availability will impact the processing of organic matter by heterotrophic bacteria with potential consequences for the marine biological carbon pump. 
    more » « less
  4. Abstract Particulate organic matter supports pelagic food webs, and the activity of these food webs attenuates the flux of carbon into the ocean interior. Understanding the extent to which microbial and metazoan heterotrophs influence particle dynamics is essential to describing the biological carbon pump and nutrient delivery to deep ecosystems. We present results of bulk and compound‐specific nitrogen stable isotope analyses and a Bayesian mixing model of zooplankton fecal pellets (FP), phytoplankton, and microbial detritus end‐members on size‐fractionated particulate organic matter from 10 depths in the upper 500 m of Monterey Bay, CA. Our results suggest three distinct zones of plankton‐particle interactions in Monterey Bay: primary production and grazing from 0 to 60 m, intense microbial reworking from 60 to 200 m, and inclusion into metazoan food webs below 200 m. Zooplankton FP signatures were found in a <20 μm particle size fraction, both at the approximate depth to which zooplankton migrate at night (∼25–60 m) and in the mesopelagic at the approximate depth to which zooplankton migrate during the day (∼200 m). This finding indicates that fecal pellets were rapidly disaggregated at the depth at which they were produced, which has implications for estimates of zooplankton FP contribution to carbon export and modeling efforts. In some water columns, much of zooplankton FP production may be disaggregated and entrained in the epipelagic zone, above the export depth. 
    more » « less
  5. Abstract Microzooplankton grazing is an essential parameter to predict the fate of organic matter production in planktonic food webs. To identify predictors of grazing, we leveraged a 6‐yr time series of coastal plankton growth and grazing rates across contrasting environmental conditions. Phytoplankton size–structure and trophic transfer were seasonally consistent with small phytoplankton cell dominance and low trophic transfer in summer, and large cell dominance and higher trophic transfer in winter. Departures from this pattern during two disruptive events revealed a critical link between phytoplankton size–structure and trophic transfer. An unusual summer bloom of large phytoplankton cells yielded high trophic transfer, and an atypical winter dominance of small phytoplankton resulted in seasonally atypical low trophic transfer. Environmental conditions during these events were neither seasonally atypical nor unique. Thus, phytoplankton size–structure rather than environmental conditions held a key‐role driving trophic transfer. Phytoplankton size–structure is easily measurable and could impart predictive power of food‐web structure and the fate of primary production in coastal ecosystems. 
    more » « less