skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Promoting Instrument Development for New Research Avenues in Ocean Science: Opening the Black Box of Grazing
While recent research has provided increasing insight into ocean ecosystem functions and rapidly improving predictive ability, it has become clear that for some key processes, including grazing by zooplankton, there simply is no currently available instrumentation to quantify relevant stocks and rates, remotely or in situ . When measurement capacity is lacking, collaborative research between instrument manufacturers and researchers can bring us closer to addressing key knowledge gaps. By necessity, this high risk, high rewards research will require iterative steps from best case scenarios under highly controlled and often artificial laboratory conditions to empirical verification in complex in situ conditions with diverse biota. To illustrate our point, we highlight the example of zooplankton grazing in marine planktonic food webs. Grazing by single-celled zooplankton accounts for the majority of organic carbon loss from marine primary production but is still measured with logistically demanding, point-sample incubation methods that result in reproducible results but at insufficient resolution to adequately describe temporal and spatial dynamics of grazer induced impacts on primary production, export production and the annual cycle of marine plankton. We advance a collaborative research and development agenda to eliminate this knowledge gap. Resolving primary production losses through grazing is fundamental to a predictive understanding of the transfer of matter and energy through marine ecosystems, major reservoirs of the global carbon cycle.  more » « less
Award ID(s):
1736635
PAR ID:
10333559
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Frontiers in Marine Science
Volume:
8
ISSN:
2296-7745
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Marine picocyanobacteria are ubiquitous primary producers across the world’s oceans, and play a key role in the global carbon cycle. Recent evidence stemming from in situ investigations have shown that picocyanobacteria are able to sink out of the euphotic zone to depth, which has traditionally been associated with larger, mineral ballasted cells. The mechanisms behind the sinking of picocyanobacteria remain a point of contention, given that they are too small to sink on their own. To gain a mechanistic understanding of the potential role of picocyanobacteria in carbon export, we tested their ability to form “suspended” (5–60 μm) and “visible” (ca. > 0.1 mm) aggregates, as well as their production of transparent exopolymer particles (TEP)—which are a key component in the formation of marine aggregates. Additionally, we investigated if interactions with heterotrophic bacteria play a role in TEP production and aggregation in Prochlorococcus and Synechococcus by comparing xenic and axenic cultures. We observed TEP production and aggregation in batch cultures of axenic Synechococcus, but not in axenic Prochlorococcus. Heterotrophic bacteria enhanced TEP production as well as suspended and visible aggregate formation in Prochlorococcus, while in Synechococcus, aggregation was enhanced with no changes in TEP. Aggregation experiments using a natural plankton community dominated by picocyanobacteria resulted in aggregation only in the presence of the ballasting mineral kaolinite, and only when Synechococcus were in their highest seasonal abundance. Our results point to a different export potential between the two picocyanobacteria, which may be mediated by interactions with heterotrophic bacteria and presence of ballasting minerals. Further studies are needed to clarify the mechanistic role of bacteria in TEP production and aggregation of these picocyanobacteria. 
    more » « less
  2. Conway, T.; Fitzsimmons, J.; Middag, R; Noble, T.; Planquette, H. (Ed.)
    Because nitrogen availability limits primary production over much of the global ocean, understanding the controls on the marine nitrogen inventory and supply to the surface ocean is essential for understanding biological productivity and exchange of greenhouse gases with the atmosphere. Quantifying the ocean’s inputs, outputs, and internal cycling of nitrogen requires a variety of tools and approaches, including measurements of the nitrogen isotope ratio in organic and inorganic nitrogen species. The marine nitrogen cycle, which shapes nitrogen availability and speciation in the ocean, is linked to the elemental cycles of carbon, phosphorus, and trace elements. For example, the majority of nitrogen cycle oxidation and reduction reactions are mediated by enzymes that require trace metals for catalysis. Recent observations made through global-scale programs such as GEOTRACES have greatly expanded our knowledge of the marine nitrogen cycle. Though much work remains to be done, here we outline key advances in understanding the marine nitrogen cycle that have been achieved through these analyses, such as the distributions and rates of dinitrogen fixation, terrestrial nitrogen inputs, and nitrogen loss processes. 
    more » « less
  3. Abstract Iron is an essential nutrient for all microorganisms of the marine environment. Iron limitation of primary production has been well documented across a significant portion of the global surface ocean, but much less is known regarding the potential for iron limitation of the marine heterotrophic microbial community. In this work, we characterize the transcriptomic response of the heterotrophic bacterial community to iron additions in the California Current System, an eastern boundary upwelling system, to detect in situ iron stress of heterotrophic bacteria. Changes in gene expression in response to iron availability by heterotrophic bacteria were detected under conditions of high productivity when carbon limitation was relieved but when iron availability remained low. The ratio of particulate organic carbon to dissolved iron emerged as a biogeochemical proxy for iron limitation of heterotrophic bacteria in this system. Iron stress was characterized by high expression levels of iron transport pathways and decreased expression of iron-containing enzymes involved in carbon metabolism, where a majority of the heterotrophic bacterial iron requirement resides. Expression of iron stress biomarkers, as identified in the iron-addition experiments, was also detected in  situ. These results suggest iron availability will impact the processing of organic matter by heterotrophic bacteria with potential consequences for the marine biological carbon pump. 
    more » « less
  4. Abstract Microzooplankton grazing is an essential parameter to predict the fate of organic matter production in planktonic food webs. To identify predictors of grazing, we leveraged a 6‐yr time series of coastal plankton growth and grazing rates across contrasting environmental conditions. Phytoplankton size–structure and trophic transfer were seasonally consistent with small phytoplankton cell dominance and low trophic transfer in summer, and large cell dominance and higher trophic transfer in winter. Departures from this pattern during two disruptive events revealed a critical link between phytoplankton size–structure and trophic transfer. An unusual summer bloom of large phytoplankton cells yielded high trophic transfer, and an atypical winter dominance of small phytoplankton resulted in seasonally atypical low trophic transfer. Environmental conditions during these events were neither seasonally atypical nor unique. Thus, phytoplankton size–structure rather than environmental conditions held a key‐role driving trophic transfer. Phytoplankton size–structure is easily measurable and could impart predictive power of food‐web structure and the fate of primary production in coastal ecosystems. 
    more » « less
  5. Abstract. Because of its temperate location, high dynamic range of environmental conditions, and extensive human activity, the long-term ecological research site in the coastal Northeastern US Shelf (NES) of the northwestern Atlantic Ocean offers an ideal opportunity to understand how productivity shifts in response to changes in planktonic community composition. Ocean production and trophic transfer rates, including net community production (NCP), net primary production (NPP), gross oxygen production (GOP), and microzooplankton grazing rates, are key metrics for understanding marine ecosystem dynamics and associated impacts on biogeochemical cycles. Although small phytoplankton usually dominate phytoplankton community composition and Chl a concentration in the NES waters during the summer, in August 2019, a bloom of the large diatom genus Hemiaulus, with N2-fixing symbionts, was observed in the mid-shelf region. NCP was 2.5 to 9 times higher when Hemiaulus dominated phytoplankton carbon compared to NCP throughout the same geographic area during the summers of 2020–2022. The Hemiaulus bloom in summer 2019 also coincided with higher trophic transfer efficiency from phytoplankton to microzooplankton and higher GOP and NPP than in the summers 2020–2022. This study suggests that the dominance of an atypical phytoplankton community that alters the typical size distribution of primary producers can significantly influence productivity and trophic transfer, highlighting the dynamic nature of the coastal ocean. Notably, summer 2018 NCP levels were also high, although the size distribution of Chl a was typical and an atypical phytoplankton community was not observed. A better understanding of the dynamics of the NES in terms of biological productivity is of primary importance, especially in the context of changing environmental conditions due to climate processes. 
    more » « less